A Combinatorial Model for $q$-Generalized Stirling and Bell Numbers

We describe a combinatorial model for the $q$-analogs of the generalized Stirling numbers in terms of bugs and colonies. Using both algebraic and combinatorial methods, we derive explicit formulas, recursions and generating functions for these $q$-analogs. We give a weight preserving bijective corre...

Full description

Bibliographic Details
Main Authors: Miguel Méndez, Adolfo Rodríguez
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2008-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3607/pdf
_version_ 1827324067884040192
author Miguel Méndez
Adolfo Rodríguez
author_facet Miguel Méndez
Adolfo Rodríguez
author_sort Miguel Méndez
collection DOAJ
description We describe a combinatorial model for the $q$-analogs of the generalized Stirling numbers in terms of bugs and colonies. Using both algebraic and combinatorial methods, we derive explicit formulas, recursions and generating functions for these $q$-analogs. We give a weight preserving bijective correspondence between our combinatorial model and rook placements on Ferrer boards. We outline a direct application of our theory to the theory of dual graded graphs developed by Fomin. Lastly we define a natural $p,q$-analog of these generalized Stirling numbers.
first_indexed 2024-04-25T02:03:56Z
format Article
id doaj.art-5be9915e7f1340858f25a98a04e930a9
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T02:03:56Z
publishDate 2008-01-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-5be9915e7f1340858f25a98a04e930a92024-03-07T14:38:06ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502008-01-01DMTCS Proceedings vol. AJ,...Proceedings10.46298/dmtcs.36073607A Combinatorial Model for $q$-Generalized Stirling and Bell NumbersMiguel Méndez0Adolfo Rodríguez1Departamento de MatematicaLaboratoire de combinatoire et d'informatique mathématique [Montréal]We describe a combinatorial model for the $q$-analogs of the generalized Stirling numbers in terms of bugs and colonies. Using both algebraic and combinatorial methods, we derive explicit formulas, recursions and generating functions for these $q$-analogs. We give a weight preserving bijective correspondence between our combinatorial model and rook placements on Ferrer boards. We outline a direct application of our theory to the theory of dual graded graphs developed by Fomin. Lastly we define a natural $p,q$-analog of these generalized Stirling numbers.https://dmtcs.episciences.org/3607/pdfstirlingbellboson$q$-analogrook numbersdual graded graphs[math.math-co] mathematics [math]/combinatorics [math.co][info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
spellingShingle Miguel Méndez
Adolfo Rodríguez
A Combinatorial Model for $q$-Generalized Stirling and Bell Numbers
Discrete Mathematics & Theoretical Computer Science
stirling
bell
boson
$q$-analog
rook numbers
dual graded graphs
[math.math-co] mathematics [math]/combinatorics [math.co]
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
title A Combinatorial Model for $q$-Generalized Stirling and Bell Numbers
title_full A Combinatorial Model for $q$-Generalized Stirling and Bell Numbers
title_fullStr A Combinatorial Model for $q$-Generalized Stirling and Bell Numbers
title_full_unstemmed A Combinatorial Model for $q$-Generalized Stirling and Bell Numbers
title_short A Combinatorial Model for $q$-Generalized Stirling and Bell Numbers
title_sort combinatorial model for q generalized stirling and bell numbers
topic stirling
bell
boson
$q$-analog
rook numbers
dual graded graphs
[math.math-co] mathematics [math]/combinatorics [math.co]
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
url https://dmtcs.episciences.org/3607/pdf
work_keys_str_mv AT miguelmendez acombinatorialmodelforqgeneralizedstirlingandbellnumbers
AT adolforodriguez acombinatorialmodelforqgeneralizedstirlingandbellnumbers
AT miguelmendez combinatorialmodelforqgeneralizedstirlingandbellnumbers
AT adolforodriguez combinatorialmodelforqgeneralizedstirlingandbellnumbers