1.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATom

<p>We have analyzed TROPOspheric Monitoring Instrument (TROPOMI) carbon monoxide (CO) data acquired between November 2017 and March 2019 with respect to other satellite (MOPITT, Measurement Of Pollution In The Troposphere) and airborne (ATom, Atmospheric Tomography mission) datasets to better...

Full description

Bibliographic Details
Main Authors: S. Martínez-Alonso, M. Deeter, H. Worden, T. Borsdorff, I. Aben, R. Commane, B. Daube, G. Francis, M. George, J. Landgraf, D. Mao, K. McKain, S. Wofsy
Format: Article
Language:English
Published: Copernicus Publications 2020-09-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/13/4841/2020/amt-13-4841-2020.pdf
_version_ 1818557367266050048
author S. Martínez-Alonso
M. Deeter
H. Worden
T. Borsdorff
I. Aben
R. Commane
B. Daube
G. Francis
M. George
J. Landgraf
D. Mao
K. McKain
K. McKain
S. Wofsy
author_facet S. Martínez-Alonso
M. Deeter
H. Worden
T. Borsdorff
I. Aben
R. Commane
B. Daube
G. Francis
M. George
J. Landgraf
D. Mao
K. McKain
K. McKain
S. Wofsy
author_sort S. Martínez-Alonso
collection DOAJ
description <p>We have analyzed TROPOspheric Monitoring Instrument (TROPOMI) carbon monoxide (CO) data acquired between November 2017 and March 2019 with respect to other satellite (MOPITT, Measurement Of Pollution In The Troposphere) and airborne (ATom, Atmospheric Tomography mission) datasets to better understand TROPOMI's contribution to the global tropospheric CO record (2000 to present). MOPITT and TROPOMI are two of only a few satellite instruments to ever derive CO from solar-reflected radiances. Therefore, it is particularly important to understand how these two datasets compare. Our results indicate that TROPOMI CO retrievals over land show excellent agreement with respect to MOPITT: relative biases and their SD (i.e., accuracy and precision) are on average <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">3.73</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow><mo>±</mo><mn mathvariant="normal">11.51</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="92pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="489e2f2dababd0dff1ebbc8079db97b2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-4841-2020-ie00001.svg" width="92pt" height="10pt" src="amt-13-4841-2020-ie00001.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2.24</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow><mo>±</mo><mn mathvariant="normal">12.38</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="92pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="0ffa6cdb6c13df20540ce90aead53166"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-4841-2020-ie00002.svg" width="92pt" height="10pt" src="amt-13-4841-2020-ie00002.png"/></svg:svg></span></span>, and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">3.22</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow><mo>±</mo><mn mathvariant="normal">11.13</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="92pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="745987ddc67b00d29a9f51648b50093e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-4841-2020-ie00003.svg" width="92pt" height="10pt" src="amt-13-4841-2020-ie00003.png"/></svg:svg></span></span> compared to the MOPITT TIR (thermal infrared), NIR (near infrared), and TIR&thinsp;<span class="inline-formula">+</span>&thinsp;NIR (multispectral) products, respectively. TROPOMI and MOPITT data also show good agreement in terms of temporal and spatial patterns.</p> <p>Despite depending on solar-reflected radiances for its measurements, TROPOMI can also retrieve CO over bodies of water if clouds are present by approximating partial columns under cloud tops using scaled, model-based reference CO profiles. We quantify the bias of TROPOMI total column retrievals over bodies of water with respect to colocated in situ ATom CO profiles after smoothing the latter with the TROPOMI column averaging kernels (AKs), which account for signal attenuation under clouds (relative bias and its SD&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>=</mo><mn mathvariant="normal">3.25</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow><mo>±</mo><mn mathvariant="normal">11.46</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="83pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="d012f03a8293f01f11566093cbbfda18"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-4841-2020-ie00004.svg" width="83pt" height="10pt" src="amt-13-4841-2020-ie00004.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula">%</span>). In addition, we quantify <span class="inline-formula"><i>e</i><sub>null</sub></span> (the null-space error), which accounts for differences between the shape of the TROPOMI reference profile and that of the ATom true profile (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>e</mi><mtext>null</mtext></msub><mo>=</mo><mn mathvariant="normal">2.16</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow><mo>±</mo><mn mathvariant="normal">2.23</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="99pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="062d3b47bcec6be6adf89b6e06356424"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-4841-2020-ie00005.svg" width="99pt" height="12pt" src="amt-13-4841-2020-ie00005.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula">%</span>). For comparisons of TROPOMI and MOPITT retrievals over open water we compare TROPOMI total CO columns to their colocated MOPITT TIR counterparts. Relative bias and its SD are <span class="inline-formula">2.98 %±15.71</span>&thinsp;<span class="inline-formula">%</span> on average.</p> <p>We investigate the impact of discrepancies between the a priori and reference CO profiles (used by MOPITT and TROPOMI, respectively) on CO retrieval biases by applying a null-space adjustment (based on the MOPITT a priori) to the TROPOMI total column values. The effect of this adjustment on MOPITT and TROPOMI biases is minor, typically 1–2 percentage points.</p>
first_indexed 2024-12-13T23:58:34Z
format Article
id doaj.art-5becc01785024648a04acdedd48ee085
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-13T23:58:34Z
publishDate 2020-09-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-5becc01785024648a04acdedd48ee0852022-12-21T23:26:28ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482020-09-01134841486410.5194/amt-13-4841-20201.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATomS. Martínez-Alonso0M. Deeter1H. Worden2T. Borsdorff3I. Aben4R. Commane5B. Daube6G. Francis7M. George8J. Landgraf9D. Mao10K. McKain11K. McKain12S. Wofsy13Atmospheric Chemistry Observations and Modeling (ACOM), National Center for Atmospheric Research(NCAR), Boulder, CO, USAAtmospheric Chemistry Observations and Modeling (ACOM), National Center for Atmospheric Research(NCAR), Boulder, CO, USAAtmospheric Chemistry Observations and Modeling (ACOM), National Center for Atmospheric Research(NCAR), Boulder, CO, USASRON Netherlands Institute for Space Research, Utrecht, the NetherlandsSRON Netherlands Institute for Space Research, Utrecht, the NetherlandsLamont-Doherty Earth Observatory, Columbia University, NY, USASchool of Engineering and Applied Science and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USAAtmospheric Chemistry Observations and Modeling (ACOM), National Center for Atmospheric Research(NCAR), Boulder, CO, USALATMOS/IPSL, Sorbonne University, UVSQ, CNRS, Paris, FranceSRON Netherlands Institute for Space Research, Utrecht, the NetherlandsAtmospheric Chemistry Observations and Modeling (ACOM), National Center for Atmospheric Research(NCAR), Boulder, CO, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USAEarth System Research Laboratory, Global Monitoring Division (GMD), National Oceanic and Atmospheric Administration, Boulder, CO, USASchool of Engineering and Applied Science and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA<p>We have analyzed TROPOspheric Monitoring Instrument (TROPOMI) carbon monoxide (CO) data acquired between November 2017 and March 2019 with respect to other satellite (MOPITT, Measurement Of Pollution In The Troposphere) and airborne (ATom, Atmospheric Tomography mission) datasets to better understand TROPOMI's contribution to the global tropospheric CO record (2000 to present). MOPITT and TROPOMI are two of only a few satellite instruments to ever derive CO from solar-reflected radiances. Therefore, it is particularly important to understand how these two datasets compare. Our results indicate that TROPOMI CO retrievals over land show excellent agreement with respect to MOPITT: relative biases and their SD (i.e., accuracy and precision) are on average <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">3.73</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow><mo>±</mo><mn mathvariant="normal">11.51</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="92pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="489e2f2dababd0dff1ebbc8079db97b2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-4841-2020-ie00001.svg" width="92pt" height="10pt" src="amt-13-4841-2020-ie00001.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2.24</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow><mo>±</mo><mn mathvariant="normal">12.38</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="92pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="0ffa6cdb6c13df20540ce90aead53166"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-4841-2020-ie00002.svg" width="92pt" height="10pt" src="amt-13-4841-2020-ie00002.png"/></svg:svg></span></span>, and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">3.22</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow><mo>±</mo><mn mathvariant="normal">11.13</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="92pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="745987ddc67b00d29a9f51648b50093e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-4841-2020-ie00003.svg" width="92pt" height="10pt" src="amt-13-4841-2020-ie00003.png"/></svg:svg></span></span> compared to the MOPITT TIR (thermal infrared), NIR (near infrared), and TIR&thinsp;<span class="inline-formula">+</span>&thinsp;NIR (multispectral) products, respectively. TROPOMI and MOPITT data also show good agreement in terms of temporal and spatial patterns.</p> <p>Despite depending on solar-reflected radiances for its measurements, TROPOMI can also retrieve CO over bodies of water if clouds are present by approximating partial columns under cloud tops using scaled, model-based reference CO profiles. We quantify the bias of TROPOMI total column retrievals over bodies of water with respect to colocated in situ ATom CO profiles after smoothing the latter with the TROPOMI column averaging kernels (AKs), which account for signal attenuation under clouds (relative bias and its SD&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>=</mo><mn mathvariant="normal">3.25</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow><mo>±</mo><mn mathvariant="normal">11.46</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="83pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="d012f03a8293f01f11566093cbbfda18"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-4841-2020-ie00004.svg" width="83pt" height="10pt" src="amt-13-4841-2020-ie00004.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula">%</span>). In addition, we quantify <span class="inline-formula"><i>e</i><sub>null</sub></span> (the null-space error), which accounts for differences between the shape of the TROPOMI reference profile and that of the ATom true profile (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>e</mi><mtext>null</mtext></msub><mo>=</mo><mn mathvariant="normal">2.16</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">%</mi></mrow><mo>±</mo><mn mathvariant="normal">2.23</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="99pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="062d3b47bcec6be6adf89b6e06356424"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-4841-2020-ie00005.svg" width="99pt" height="12pt" src="amt-13-4841-2020-ie00005.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula">%</span>). For comparisons of TROPOMI and MOPITT retrievals over open water we compare TROPOMI total CO columns to their colocated MOPITT TIR counterparts. Relative bias and its SD are <span class="inline-formula">2.98 %±15.71</span>&thinsp;<span class="inline-formula">%</span> on average.</p> <p>We investigate the impact of discrepancies between the a priori and reference CO profiles (used by MOPITT and TROPOMI, respectively) on CO retrieval biases by applying a null-space adjustment (based on the MOPITT a priori) to the TROPOMI total column values. The effect of this adjustment on MOPITT and TROPOMI biases is minor, typically 1–2 percentage points.</p>https://amt.copernicus.org/articles/13/4841/2020/amt-13-4841-2020.pdf
spellingShingle S. Martínez-Alonso
M. Deeter
H. Worden
T. Borsdorff
I. Aben
R. Commane
B. Daube
G. Francis
M. George
J. Landgraf
D. Mao
K. McKain
K. McKain
S. Wofsy
1.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATom
Atmospheric Measurement Techniques
title 1.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATom
title_full 1.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATom
title_fullStr 1.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATom
title_full_unstemmed 1.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATom
title_short 1.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATom
title_sort 1 5 years of tropomi co measurements comparisons to mopitt and atom
url https://amt.copernicus.org/articles/13/4841/2020/amt-13-4841-2020.pdf
work_keys_str_mv AT smartinezalonso 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT mdeeter 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT hworden 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT tborsdorff 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT iaben 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT rcommane 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT bdaube 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT gfrancis 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT mgeorge 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT jlandgraf 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT dmao 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT kmckain 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT kmckain 15yearsoftropomicomeasurementscomparisonstomopittandatom
AT swofsy 15yearsoftropomicomeasurementscomparisonstomopittandatom