A Dynamic Imaging Simulation Method of Infrared Aero-Optical Effect Based on Continuously Varying Gaussian Superposition Model

Aero-optical effect correction has become a crucial issue in airborne infrared imaging. However, it is impractical to test the correction algorithm using flight tests and numerical simulation because of its high cost. This study proposes a dynamic imaging simulation method for the infrared aero-opti...

Full description

Bibliographic Details
Main Authors: Shuyuan Zhang, Xin Chen, Yingqing Zu, Peng Rao
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/4/1616
Description
Summary:Aero-optical effect correction has become a crucial issue in airborne infrared imaging. However, it is impractical to test the correction algorithm using flight tests and numerical simulation because of its high cost. This study proposes a dynamic imaging simulation method for the infrared aero-optical effect based on a continuously varying Gaussian superposition model. The influence of infrared image degradation under different high-speed aerodynamic flow fields was investigated in detail. A continuously varying Gaussian superposition model was established for flight speed, altitude, and attitude. A dynamic infrared scene simulation model was constructed. Experimental results show that the proposed method can realistically simulate actual aero-optical effects of any flight case. Moreover, it can simulate continuous frames of aerodynamically degraded infrared images. The method uses a simpler model than numerical simulation and provides more data for multitype tasks.
ISSN:1424-8220