Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivar
IntroductionDuring plant evolution, nucleotide-binding sites (NBS) and leucine-rich repeat (LRR) genes have made significant contributions to plant disease resistance. With many high-quality plant genomes sequenced, identification and comprehensive analyses of NBS-LRR genes at whole genome level are...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-02-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fpls.2023.1091567/full |
_version_ | 1797902883268591616 |
---|---|
author | Zhengjie Jiang Mengyu Zhao Hongzhen Qin Sicheng Li Xiping Yang Xiping Yang |
author_facet | Zhengjie Jiang Mengyu Zhao Hongzhen Qin Sicheng Li Xiping Yang Xiping Yang |
author_sort | Zhengjie Jiang |
collection | DOAJ |
description | IntroductionDuring plant evolution, nucleotide-binding sites (NBS) and leucine-rich repeat (LRR) genes have made significant contributions to plant disease resistance. With many high-quality plant genomes sequenced, identification and comprehensive analyses of NBS-LRR genes at whole genome level are of great importance to understand and utilize them.MethodsIn this study, we identified the NBS-LRR genes of 23 representative species at whole genome level, and researches on NBS-LRR genes of four monocotyledonous grass species, Saccharum spontaneum, Saccharum officinarum, Sorghum bicolor and Miscanthus sinensis, were focused. Results and discussionWe found that whole genome duplication, gene expansion, and allele loss could be factors affecting the number of NBS-LRR genes in the species, and whole genome duplication is likely to be the main cause of the number of NBS-LRR genes in sugarcane. Meanwhile, we also found a progressive trend of positive selection on NBS-LRR genes. These studies further elucidated the evolutionary pattern of NBS-LRR genes in plants. Transcriptome data from multiple sugarcane diseases revealed that more differentially expressed NBS-LRR genes were derived from S. spontaneum than from S. officinarum in modern sugarcane cultivars, and the proportion was significantly higher than the expected. This finding reveals that S. spontaneum has a greater contribution to disease resistance for modern sugarcane cultivars. In addition, we observed allelespecific expression of seven NBS-LRR genes under leaf scald, and 125 NBS-LRR genes responding to multiple diseases were identified. Finally, we built a plant NBS-LRR gene database to facilitate subsequent analysis and use of NBSLRR genes obtained here. In conclusion, this study complemented and completed the research of plant NBS-LRR genes, and discussed how NBS-LRR genes responding to sugarcane diseases, which provided a guide and genetic resources for further research and utilization of NBS-LRR genes. |
first_indexed | 2024-04-10T09:24:17Z |
format | Article |
id | doaj.art-5bfdb687c33d44a98961a038af50808b |
institution | Directory Open Access Journal |
issn | 1664-462X |
language | English |
last_indexed | 2024-04-10T09:24:17Z |
publishDate | 2023-02-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Plant Science |
spelling | doaj.art-5bfdb687c33d44a98961a038af50808b2023-02-20T06:42:36ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2023-02-011410.3389/fpls.2023.10915671091567Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivarZhengjie Jiang0Mengyu Zhao1Hongzhen Qin2Sicheng Li3Xiping Yang4Xiping Yang5State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, ChinaState Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, ChinaNational Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, ChinaState Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, ChinaState Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, ChinaNational Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, ChinaIntroductionDuring plant evolution, nucleotide-binding sites (NBS) and leucine-rich repeat (LRR) genes have made significant contributions to plant disease resistance. With many high-quality plant genomes sequenced, identification and comprehensive analyses of NBS-LRR genes at whole genome level are of great importance to understand and utilize them.MethodsIn this study, we identified the NBS-LRR genes of 23 representative species at whole genome level, and researches on NBS-LRR genes of four monocotyledonous grass species, Saccharum spontaneum, Saccharum officinarum, Sorghum bicolor and Miscanthus sinensis, were focused. Results and discussionWe found that whole genome duplication, gene expansion, and allele loss could be factors affecting the number of NBS-LRR genes in the species, and whole genome duplication is likely to be the main cause of the number of NBS-LRR genes in sugarcane. Meanwhile, we also found a progressive trend of positive selection on NBS-LRR genes. These studies further elucidated the evolutionary pattern of NBS-LRR genes in plants. Transcriptome data from multiple sugarcane diseases revealed that more differentially expressed NBS-LRR genes were derived from S. spontaneum than from S. officinarum in modern sugarcane cultivars, and the proportion was significantly higher than the expected. This finding reveals that S. spontaneum has a greater contribution to disease resistance for modern sugarcane cultivars. In addition, we observed allelespecific expression of seven NBS-LRR genes under leaf scald, and 125 NBS-LRR genes responding to multiple diseases were identified. Finally, we built a plant NBS-LRR gene database to facilitate subsequent analysis and use of NBSLRR genes obtained here. In conclusion, this study complemented and completed the research of plant NBS-LRR genes, and discussed how NBS-LRR genes responding to sugarcane diseases, which provided a guide and genetic resources for further research and utilization of NBS-LRR genes.https://www.frontiersin.org/articles/10.3389/fpls.2023.1091567/fullsugarcaneNBS-LRR genesphylogenetic analysisevolutionary analysestranscriptomic analysis |
spellingShingle | Zhengjie Jiang Mengyu Zhao Hongzhen Qin Sicheng Li Xiping Yang Xiping Yang Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivar Frontiers in Plant Science sugarcane NBS-LRR genes phylogenetic analysis evolutionary analyses transcriptomic analysis |
title | Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivar |
title_full | Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivar |
title_fullStr | Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivar |
title_full_unstemmed | Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivar |
title_short | Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivar |
title_sort | genome wide analysis of nbs lrr genes revealed contribution of disease resistance from saccharum spontaneum to modern sugarcane cultivar |
topic | sugarcane NBS-LRR genes phylogenetic analysis evolutionary analyses transcriptomic analysis |
url | https://www.frontiersin.org/articles/10.3389/fpls.2023.1091567/full |
work_keys_str_mv | AT zhengjiejiang genomewideanalysisofnbslrrgenesrevealedcontributionofdiseaseresistancefromsaccharumspontaneumtomodernsugarcanecultivar AT mengyuzhao genomewideanalysisofnbslrrgenesrevealedcontributionofdiseaseresistancefromsaccharumspontaneumtomodernsugarcanecultivar AT hongzhenqin genomewideanalysisofnbslrrgenesrevealedcontributionofdiseaseresistancefromsaccharumspontaneumtomodernsugarcanecultivar AT sichengli genomewideanalysisofnbslrrgenesrevealedcontributionofdiseaseresistancefromsaccharumspontaneumtomodernsugarcanecultivar AT xipingyang genomewideanalysisofnbslrrgenesrevealedcontributionofdiseaseresistancefromsaccharumspontaneumtomodernsugarcanecultivar AT xipingyang genomewideanalysisofnbslrrgenesrevealedcontributionofdiseaseresistancefromsaccharumspontaneumtomodernsugarcanecultivar |