Evaluating the Impact of Long-Term Land Use Change and Age since Disturbance on Soil Faunal Diversity

Soil organisms are the biological drivers of processes and functions that maintain soil properties and ecosystem services. Soil fauna contribute to nutrient turnover, decomposition and other important biogeochemical processes. This investigation assessed the diversity and abundance of soil arthropod...

Full description

Bibliographic Details
Main Authors: Felicity Victoria Crotty, Umran Akkan Demirer, Stuart Lee Norris, Wei Liu, Philip James Murray
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/14/9/1882
Description
Summary:Soil organisms are the biological drivers of processes and functions that maintain soil properties and ecosystem services. Soil fauna contribute to nutrient turnover, decomposition and other important biogeochemical processes. This investigation assessed the diversity and abundance of soil arthropods (0.1–4 mm) along a chronosequence of land use types covering a relatively small geographical distance but with the same underlying soil type and climatic conditions. The compared habitats and the approximate ages since anthropogenic disturbance were ancient woodland (>200 y), old woodland (<200 y), unimproved semi-natural grassland (>50 y), willow/poplar coppice (>30 y), unimproved permanent pasture (<20 y), improved permanent pasture (<10 y), and recently grazed and reseeded grassland (>2 y), and the soil types of all habitats were the same within a 5 km radius. Land use type and age since anthropogenic disturbance significantly (<i>p</i> < 0.05) influenced the community composition of soil fauna, with richer arthropod communities found in woodlands compared with recently managed grassland. This study has confirmed a significant effect of land use type and age since disturbance on soil faunal diversity and community structure.
ISSN:1999-4907