Receding Horizon Control of Cooling Systems for Large-Size Uninterruptible Power Supply Based on a Metal-Air Battery System
As application of electric energy have expanded, the uninterruptible power supply (UPS) concept has attracted considerable attention, and new UPS technologies have been developed. Despite the extensive research on the batteries for UPS, conventional batteries are still being used in large-scale UPS...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/13/7/1611 |
_version_ | 1827719491368255488 |
---|---|
author | Bonhyun Gu Heeyun Lee Changbeom Kang Donghwan Sung Sanghoon Lee Sunghyun Yun Sung Kwan Park Gu-Young Cho Namwook Kim Suk Won Cha |
author_facet | Bonhyun Gu Heeyun Lee Changbeom Kang Donghwan Sung Sanghoon Lee Sunghyun Yun Sung Kwan Park Gu-Young Cho Namwook Kim Suk Won Cha |
author_sort | Bonhyun Gu |
collection | DOAJ |
description | As application of electric energy have expanded, the uninterruptible power supply (UPS) concept has attracted considerable attention, and new UPS technologies have been developed. Despite the extensive research on the batteries for UPS, conventional batteries are still being used in large-scale UPS systems. However, lead-acid batteries, which are currently widely adopted in UPS, require frequent maintenance and are relatively expensive as compared with some other kinds of batteries, like metal-air batteries. In previous work, we designed a novel metal-air battery, with low cost and easy maintenance for large-scale UPS applications. An extensive analysis was performed to apply our metal-air battery to the hybrid UPS model. In this study, we focus on including an optimal control system for high battery performance. We developed an algorithm based on receding horizon control (RHC) for each fan of the cooling system. The algorithm reflects the operation properties of the metal-air battery so that it can supply power for a long time. We solved RHC by applying dynamic programming (DP) for a corresponding time. Different variables, such as current density, oxygen concentration, and temperature, were considered for the application of DP. Additionally, a 1.5-dimensional DP, which is used for solving the RHC, was developed using the state variables with high sensitivity and considering the battery characteristics. Because there is no other control variable during operation, only one control variable, the fan flow, was used, and the state variables were divided by section rather than a point. Thus, we not only developed a sub-optimal control strategy for the UPS but also found that fan control can improve the performance of metal-air batteries. The sub-optimal control strategy showed stable and 6–10% of improvement in UPS operating time based on the simulation. |
first_indexed | 2024-03-10T20:43:50Z |
format | Article |
id | doaj.art-5c13a31ff714457f8150c73d9fbc073e |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-03-10T20:43:50Z |
publishDate | 2020-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-5c13a31ff714457f8150c73d9fbc073e2023-11-19T20:25:46ZengMDPI AGEnergies1996-10732020-04-01137161110.3390/en13071611Receding Horizon Control of Cooling Systems for Large-Size Uninterruptible Power Supply Based on a Metal-Air Battery SystemBonhyun Gu0Heeyun Lee1Changbeom Kang2Donghwan Sung3Sanghoon Lee4Sunghyun Yun5Sung Kwan Park6Gu-Young Cho7Namwook Kim8Suk Won Cha9Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, KoreaDepartment of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, KoreaDepartment of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, KoreaDepartment of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, KoreaDepartment of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, KoreaDepartment of Electrical and Computer Engineering, Seoul National University, Seoul 08826, KoreaDepartment of Materials Science and Engineering, Seoul National University, Seoul 08826, KoreaDepartment of Mechanical Engineering, Dankook University, Gyeonggi-do 16890, KoreaDepartment of Mechanical Engineering, Hanyang University, Ansan 15588, KoreaDepartment of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, KoreaAs application of electric energy have expanded, the uninterruptible power supply (UPS) concept has attracted considerable attention, and new UPS technologies have been developed. Despite the extensive research on the batteries for UPS, conventional batteries are still being used in large-scale UPS systems. However, lead-acid batteries, which are currently widely adopted in UPS, require frequent maintenance and are relatively expensive as compared with some other kinds of batteries, like metal-air batteries. In previous work, we designed a novel metal-air battery, with low cost and easy maintenance for large-scale UPS applications. An extensive analysis was performed to apply our metal-air battery to the hybrid UPS model. In this study, we focus on including an optimal control system for high battery performance. We developed an algorithm based on receding horizon control (RHC) for each fan of the cooling system. The algorithm reflects the operation properties of the metal-air battery so that it can supply power for a long time. We solved RHC by applying dynamic programming (DP) for a corresponding time. Different variables, such as current density, oxygen concentration, and temperature, were considered for the application of DP. Additionally, a 1.5-dimensional DP, which is used for solving the RHC, was developed using the state variables with high sensitivity and considering the battery characteristics. Because there is no other control variable during operation, only one control variable, the fan flow, was used, and the state variables were divided by section rather than a point. Thus, we not only developed a sub-optimal control strategy for the UPS but also found that fan control can improve the performance of metal-air batteries. The sub-optimal control strategy showed stable and 6–10% of improvement in UPS operating time based on the simulation.https://www.mdpi.com/1996-1073/13/7/1611cooling systemdynamic programmingmetal-air batteryreceding horizon controlstate variablesuninterruptible power supply |
spellingShingle | Bonhyun Gu Heeyun Lee Changbeom Kang Donghwan Sung Sanghoon Lee Sunghyun Yun Sung Kwan Park Gu-Young Cho Namwook Kim Suk Won Cha Receding Horizon Control of Cooling Systems for Large-Size Uninterruptible Power Supply Based on a Metal-Air Battery System Energies cooling system dynamic programming metal-air battery receding horizon control state variables uninterruptible power supply |
title | Receding Horizon Control of Cooling Systems for Large-Size Uninterruptible Power Supply Based on a Metal-Air Battery System |
title_full | Receding Horizon Control of Cooling Systems for Large-Size Uninterruptible Power Supply Based on a Metal-Air Battery System |
title_fullStr | Receding Horizon Control of Cooling Systems for Large-Size Uninterruptible Power Supply Based on a Metal-Air Battery System |
title_full_unstemmed | Receding Horizon Control of Cooling Systems for Large-Size Uninterruptible Power Supply Based on a Metal-Air Battery System |
title_short | Receding Horizon Control of Cooling Systems for Large-Size Uninterruptible Power Supply Based on a Metal-Air Battery System |
title_sort | receding horizon control of cooling systems for large size uninterruptible power supply based on a metal air battery system |
topic | cooling system dynamic programming metal-air battery receding horizon control state variables uninterruptible power supply |
url | https://www.mdpi.com/1996-1073/13/7/1611 |
work_keys_str_mv | AT bonhyungu recedinghorizoncontrolofcoolingsystemsforlargesizeuninterruptiblepowersupplybasedonametalairbatterysystem AT heeyunlee recedinghorizoncontrolofcoolingsystemsforlargesizeuninterruptiblepowersupplybasedonametalairbatterysystem AT changbeomkang recedinghorizoncontrolofcoolingsystemsforlargesizeuninterruptiblepowersupplybasedonametalairbatterysystem AT donghwansung recedinghorizoncontrolofcoolingsystemsforlargesizeuninterruptiblepowersupplybasedonametalairbatterysystem AT sanghoonlee recedinghorizoncontrolofcoolingsystemsforlargesizeuninterruptiblepowersupplybasedonametalairbatterysystem AT sunghyunyun recedinghorizoncontrolofcoolingsystemsforlargesizeuninterruptiblepowersupplybasedonametalairbatterysystem AT sungkwanpark recedinghorizoncontrolofcoolingsystemsforlargesizeuninterruptiblepowersupplybasedonametalairbatterysystem AT guyoungcho recedinghorizoncontrolofcoolingsystemsforlargesizeuninterruptiblepowersupplybasedonametalairbatterysystem AT namwookkim recedinghorizoncontrolofcoolingsystemsforlargesizeuninterruptiblepowersupplybasedonametalairbatterysystem AT sukwoncha recedinghorizoncontrolofcoolingsystemsforlargesizeuninterruptiblepowersupplybasedonametalairbatterysystem |