Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL

We present timing jitter measurements of an InGaAs quantum well vertical external cavity surface emitting laser (VECSEL) passively mode locked with a quantum dot semiconductor saturable absorber mirror (SESAM) at 2-GHz repetition rate. It generates 53-mW average output power in 4.6-ps pulses at 953...

Full description

Bibliographic Details
Main Authors: V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Sudmeyer, U. Keller
Format: Article
Language:English
Published: IEEE 2011-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/5893899/
Description
Summary:We present timing jitter measurements of an InGaAs quantum well vertical external cavity surface emitting laser (VECSEL) passively mode locked with a quantum dot semiconductor saturable absorber mirror (SESAM) at 2-GHz repetition rate. It generates 53-mW average output power in 4.6-ps pulses at 953 nm. The laser housing was optimized for high mechanical stability to reduce acoustic noise. We use a fiber-coupled multimode 808-nm pump diode, which is mounted inside the laser housing. No active cavity length stabilization is employed. The phase noise of the free-running laser integrated over a bandwidth from 100 Hz to 1 MHz corresponds to an RMS timing jitter of ≈212 fs, which is lower than previously obtained for mode-locked VECSELs. This clearly confirms the superior noise performance expected from a high-Q-cavity semiconductor laser. In contrast to edge-emitting semiconductor diode lasers, the cavity mode is perpendicular to the quantum well gain layers, which minimizes complex dispersion and nonlinear dynamics.
ISSN:1943-0655