Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach

SARS-CoV-2 infection produces a response of the innate immune system causing oxidative stress and a strong inflammatory reaction termed ‘cytokine storm’ that is one of the leading causes of death. Paraoxonase-1 (PON1) protects against oxidative stress by hydrolyzing lipoperoxides. Alterations in PON...

Full description

Bibliographic Details
Main Authors: Elisabet Rodríguez-Tomàs, Simona Iftimie, Helena Castañé, Gerard Baiges-Gaya, Anna Hernández-Aguilera, María González-Viñas, Antoni Castro, Jordi Camps, Jorge Joven
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Antioxidants
Subjects:
Online Access:https://www.mdpi.com/2076-3921/10/6/991
_version_ 1827689141660286976
author Elisabet Rodríguez-Tomàs
Simona Iftimie
Helena Castañé
Gerard Baiges-Gaya
Anna Hernández-Aguilera
María González-Viñas
Antoni Castro
Jordi Camps
Jorge Joven
author_facet Elisabet Rodríguez-Tomàs
Simona Iftimie
Helena Castañé
Gerard Baiges-Gaya
Anna Hernández-Aguilera
María González-Viñas
Antoni Castro
Jordi Camps
Jorge Joven
author_sort Elisabet Rodríguez-Tomàs
collection DOAJ
description SARS-CoV-2 infection produces a response of the innate immune system causing oxidative stress and a strong inflammatory reaction termed ‘cytokine storm’ that is one of the leading causes of death. Paraoxonase-1 (PON1) protects against oxidative stress by hydrolyzing lipoperoxides. Alterations in PON1 activity have been associated with pro-inflammatory mediators such as the chemokine (C-C motif) ligand 2 (CCL2), and the glycoprotein galectin-3. We aimed to investigate the alterations in the circulating levels of PON1, CCL2, and galectin-3 in 126 patients with COVID-19 and their interactions with clinical variables and analytical parameters. A machine learning approach was used to identify predictive markers of the disease. For comparisons, we recruited 45 COVID-19 negative patients and 50 healthy individuals. Our approach identified a synergy between oxidative stress, inflammation, and fibrogenesis in positive patients that is not observed in negative patients. PON1 activity was the parameter with the greatest power to discriminate between patients who were either positive or negative for COVID-19, while their levels of CCL2 and galectin-3 were similar. We suggest that the measurement of serum PON1 activity may be a useful marker for the diagnosis of COVID-19.
first_indexed 2024-03-10T10:12:38Z
format Article
id doaj.art-5c1c4e575ba947f2ad97927ecc35945f
institution Directory Open Access Journal
issn 2076-3921
language English
last_indexed 2024-03-10T10:12:38Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Antioxidants
spelling doaj.art-5c1c4e575ba947f2ad97927ecc35945f2023-11-22T01:05:26ZengMDPI AGAntioxidants2076-39212021-06-0110699110.3390/antiox10060991Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning ApproachElisabet Rodríguez-Tomàs0Simona Iftimie1Helena Castañé2Gerard Baiges-Gaya3Anna Hernández-Aguilera4María González-Viñas5Antoni Castro6Jordi Camps7Jorge Joven8Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, SpainDepartment of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, SpainUnitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, SpainUnitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, SpainUnitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, SpainDepartment of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, SpainDepartment of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, SpainUnitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, SpainUnitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, SpainSARS-CoV-2 infection produces a response of the innate immune system causing oxidative stress and a strong inflammatory reaction termed ‘cytokine storm’ that is one of the leading causes of death. Paraoxonase-1 (PON1) protects against oxidative stress by hydrolyzing lipoperoxides. Alterations in PON1 activity have been associated with pro-inflammatory mediators such as the chemokine (C-C motif) ligand 2 (CCL2), and the glycoprotein galectin-3. We aimed to investigate the alterations in the circulating levels of PON1, CCL2, and galectin-3 in 126 patients with COVID-19 and their interactions with clinical variables and analytical parameters. A machine learning approach was used to identify predictive markers of the disease. For comparisons, we recruited 45 COVID-19 negative patients and 50 healthy individuals. Our approach identified a synergy between oxidative stress, inflammation, and fibrogenesis in positive patients that is not observed in negative patients. PON1 activity was the parameter with the greatest power to discriminate between patients who were either positive or negative for COVID-19, while their levels of CCL2 and galectin-3 were similar. We suggest that the measurement of serum PON1 activity may be a useful marker for the diagnosis of COVID-19.https://www.mdpi.com/2076-3921/10/6/991biomarkerschemokinesCOVID-19galectin-3machine learningparaoxonase-1
spellingShingle Elisabet Rodríguez-Tomàs
Simona Iftimie
Helena Castañé
Gerard Baiges-Gaya
Anna Hernández-Aguilera
María González-Viñas
Antoni Castro
Jordi Camps
Jorge Joven
Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach
Antioxidants
biomarkers
chemokines
COVID-19
galectin-3
machine learning
paraoxonase-1
title Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach
title_full Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach
title_fullStr Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach
title_full_unstemmed Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach
title_short Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach
title_sort clinical performance of paraoxonase 1 related variables and novel markers of inflammation in coronavirus disease 19 a machine learning approach
topic biomarkers
chemokines
COVID-19
galectin-3
machine learning
paraoxonase-1
url https://www.mdpi.com/2076-3921/10/6/991
work_keys_str_mv AT elisabetrodrigueztomas clinicalperformanceofparaoxonase1relatedvariablesandnovelmarkersofinflammationincoronavirusdisease19amachinelearningapproach
AT simonaiftimie clinicalperformanceofparaoxonase1relatedvariablesandnovelmarkersofinflammationincoronavirusdisease19amachinelearningapproach
AT helenacastane clinicalperformanceofparaoxonase1relatedvariablesandnovelmarkersofinflammationincoronavirusdisease19amachinelearningapproach
AT gerardbaigesgaya clinicalperformanceofparaoxonase1relatedvariablesandnovelmarkersofinflammationincoronavirusdisease19amachinelearningapproach
AT annahernandezaguilera clinicalperformanceofparaoxonase1relatedvariablesandnovelmarkersofinflammationincoronavirusdisease19amachinelearningapproach
AT mariagonzalezvinas clinicalperformanceofparaoxonase1relatedvariablesandnovelmarkersofinflammationincoronavirusdisease19amachinelearningapproach
AT antonicastro clinicalperformanceofparaoxonase1relatedvariablesandnovelmarkersofinflammationincoronavirusdisease19amachinelearningapproach
AT jordicamps clinicalperformanceofparaoxonase1relatedvariablesandnovelmarkersofinflammationincoronavirusdisease19amachinelearningapproach
AT jorgejoven clinicalperformanceofparaoxonase1relatedvariablesandnovelmarkersofinflammationincoronavirusdisease19amachinelearningapproach