Secchi Disk Depth Estimation from China’s New Generation of GF-5 Hyperspectral Observations Using a Semi-Analytical Scheme

Water clarity, commonly measured as the Secchi disk depth (<inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> <...

Full description

Bibliographic Details
Main Authors: Yao Liu, Chenchao Xiao, Junsheng Li, Fangfang Zhang, Shenglei Wang
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/11/1849
_version_ 1797565852938141696
author Yao Liu
Chenchao Xiao
Junsheng Li
Fangfang Zhang
Shenglei Wang
author_facet Yao Liu
Chenchao Xiao
Junsheng Li
Fangfang Zhang
Shenglei Wang
author_sort Yao Liu
collection DOAJ
description Water clarity, commonly measured as the Secchi disk depth (<inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula>), is an important parameter that depicts water quality in aquatic ecosystems. China’s new generation Advanced HyperSpectral Imager (AHSI) on board the GF-5 satellite has significant potential for applications of more accurate water clarity estimation compared with existing multispectral satellite imagery, considering its high spectral resolution with a 30-m spatial resolution. In this study, we validate the semi-analytical model with various Quasi-Analytical Algorithms (QAA), including <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mi>A</mi> <msub> <mi>A</mi> <mrow> <mi>V</mi> <mn>5</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mi>A</mi> <msub> <mi>A</mi> <mrow> <mi>V</mi> <mn>6</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mi>A</mi> <msub> <mi>A</mi> <mrow> <mi>L</mi> <mn>09</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mi>A</mi> <msub> <mi>A</mi> <mrow> <mi>M</mi> <mn>14</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, for the AHSI images with concurrent in situ measurements in four inland water bodies with a <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula> range of 0.3–4.5 m. The semi-analytical method with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mi>A</mi> <msub> <mi>A</mi> <mrow> <mi>V</mi> <mn>5</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> can yield the most accurate <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula> predictions with approximated atmospheric-corrected remote sensing reflectance. For 84 concurrent sampling sites, the estimated <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula> had a mean absolute error (MAE) of 0.35 m, while the mean relative error (MRE) was 25.3%. Specifically, the MAEs of estimated <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula> were 0.22, 0.46, and 0.24 m for <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula> of 0.3–1, 1–3, and 3–4.5 m, respectively. The corresponding MREs were 33.1%, 29.1% and 6.3%, respectively. Although further validation is still required, especially in terms of highly turbid waters, this study indicates that AHSI is effective for water clarity monitoring.
first_indexed 2024-03-10T19:18:50Z
format Article
id doaj.art-5c2b4209ae0c412b8973f82b1666f335
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T19:18:50Z
publishDate 2020-06-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-5c2b4209ae0c412b8973f82b1666f3352023-11-20T03:08:49ZengMDPI AGRemote Sensing2072-42922020-06-011211184910.3390/rs12111849Secchi Disk Depth Estimation from China’s New Generation of GF-5 Hyperspectral Observations Using a Semi-Analytical SchemeYao Liu0Chenchao Xiao1Junsheng Li2Fangfang Zhang3Shenglei Wang4Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, Beijing 100048, ChinaLand Satellite Remote Sensing Application Center, Ministry of Natural Resources of China, Beijing 100048, ChinaKey Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaKey Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaKey Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaWater clarity, commonly measured as the Secchi disk depth (<inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula>), is an important parameter that depicts water quality in aquatic ecosystems. China’s new generation Advanced HyperSpectral Imager (AHSI) on board the GF-5 satellite has significant potential for applications of more accurate water clarity estimation compared with existing multispectral satellite imagery, considering its high spectral resolution with a 30-m spatial resolution. In this study, we validate the semi-analytical model with various Quasi-Analytical Algorithms (QAA), including <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mi>A</mi> <msub> <mi>A</mi> <mrow> <mi>V</mi> <mn>5</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mi>A</mi> <msub> <mi>A</mi> <mrow> <mi>V</mi> <mn>6</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mi>A</mi> <msub> <mi>A</mi> <mrow> <mi>L</mi> <mn>09</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mi>A</mi> <msub> <mi>A</mi> <mrow> <mi>M</mi> <mn>14</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, for the AHSI images with concurrent in situ measurements in four inland water bodies with a <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula> range of 0.3–4.5 m. The semi-analytical method with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mi>A</mi> <msub> <mi>A</mi> <mrow> <mi>V</mi> <mn>5</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> can yield the most accurate <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula> predictions with approximated atmospheric-corrected remote sensing reflectance. For 84 concurrent sampling sites, the estimated <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula> had a mean absolute error (MAE) of 0.35 m, while the mean relative error (MRE) was 25.3%. Specifically, the MAEs of estimated <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula> were 0.22, 0.46, and 0.24 m for <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </semantics> </math> </inline-formula> of 0.3–1, 1–3, and 3–4.5 m, respectively. The corresponding MREs were 33.1%, 29.1% and 6.3%, respectively. Although further validation is still required, especially in terms of highly turbid waters, this study indicates that AHSI is effective for water clarity monitoring.https://www.mdpi.com/2072-4292/12/11/1849Secchi-disk depthhyperspectral imageryGF-5 satellitesemi-analytical modelQuasi-Analytical Algorithm
spellingShingle Yao Liu
Chenchao Xiao
Junsheng Li
Fangfang Zhang
Shenglei Wang
Secchi Disk Depth Estimation from China’s New Generation of GF-5 Hyperspectral Observations Using a Semi-Analytical Scheme
Remote Sensing
Secchi-disk depth
hyperspectral imagery
GF-5 satellite
semi-analytical model
Quasi-Analytical Algorithm
title Secchi Disk Depth Estimation from China’s New Generation of GF-5 Hyperspectral Observations Using a Semi-Analytical Scheme
title_full Secchi Disk Depth Estimation from China’s New Generation of GF-5 Hyperspectral Observations Using a Semi-Analytical Scheme
title_fullStr Secchi Disk Depth Estimation from China’s New Generation of GF-5 Hyperspectral Observations Using a Semi-Analytical Scheme
title_full_unstemmed Secchi Disk Depth Estimation from China’s New Generation of GF-5 Hyperspectral Observations Using a Semi-Analytical Scheme
title_short Secchi Disk Depth Estimation from China’s New Generation of GF-5 Hyperspectral Observations Using a Semi-Analytical Scheme
title_sort secchi disk depth estimation from china s new generation of gf 5 hyperspectral observations using a semi analytical scheme
topic Secchi-disk depth
hyperspectral imagery
GF-5 satellite
semi-analytical model
Quasi-Analytical Algorithm
url https://www.mdpi.com/2072-4292/12/11/1849
work_keys_str_mv AT yaoliu secchidiskdepthestimationfromchinasnewgenerationofgf5hyperspectralobservationsusingasemianalyticalscheme
AT chenchaoxiao secchidiskdepthestimationfromchinasnewgenerationofgf5hyperspectralobservationsusingasemianalyticalscheme
AT junshengli secchidiskdepthestimationfromchinasnewgenerationofgf5hyperspectralobservationsusingasemianalyticalscheme
AT fangfangzhang secchidiskdepthestimationfromchinasnewgenerationofgf5hyperspectralobservationsusingasemianalyticalscheme
AT shengleiwang secchidiskdepthestimationfromchinasnewgenerationofgf5hyperspectralobservationsusingasemianalyticalscheme