Suggested Production of a Guaiacyl Benzofuran Derivative from Softwood via Lignocresol

Lignocresol was isolated from softwood with p-cresol using sulfuric acid and phase separation. An alkaline treatment of the lignocresol, followed by acidification, selectively yielded a guaiacyl coumaran, G1, in the acid-soluble fraction. With further alkaline treatment of G1 in 0.5 M of NaOH soluti...

Full description

Bibliographic Details
Main Authors: Hiroshi Nonaka;, Ryota Yamamoto, Hirotaka Katsuzaki, Masamitsu Funaoka
Format: Article
Language:English
Published: North Carolina State University 2016-07-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_3_6932_Nonaka_Guaiacyl_Benzofuran_Derivative_Softwood
Description
Summary:Lignocresol was isolated from softwood with p-cresol using sulfuric acid and phase separation. An alkaline treatment of the lignocresol, followed by acidification, selectively yielded a guaiacyl coumaran, G1, in the acid-soluble fraction. With further alkaline treatment of G1 in 0.5 M of NaOH solution at 170 °C for 60 min, it was strongly suggested that a guaiacyl benzofuran derivative, G2, was obtained by the elimination of formaldehyde, based on analytical data of the reaction mixture. The process is very unique and well-designed based on the reactivity of Cα-ethers, or Cα-OH, Cβ-aryl-ethers, and Cγ-OH of lignin, although condensation reactions via formaldehyde occurred in parallel to give condensed products with a diarylmethane structure. Because these phenolic dimers, G1 and G2, were recovered from the guaiacyl unit linked with the neighboring guaiacyl units via two Beta-aryl-ether bonds, they are promising lignin-derived chemicals that are obtainable in a high yield.
ISSN:1930-2126
1930-2126