A comparison of online methods for change point detection in ion-mobility spectrometry data

When on-site classification of volatile organic compounds (VOCs) is required, a portable ion mobility spectrometer (IMS) is a suitable choice. However, the IMS readings often show transient phases before they stabilize. Even so the importance of transient phase and features extracted from it has bee...

Full description

Bibliographic Details
Main Authors: Anton Kondratev, Katri Salminen, Jussi Rantala, Timo Salpavaara, Jarmo Verho, Veikko Surakka, Jukka Lekkala, Antti Vehkaoja, Philipp Müller
Format: Article
Language:English
Published: Elsevier 2022-07-01
Series:Array
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590005622000182
_version_ 1818209376715931648
author Anton Kondratev
Katri Salminen
Jussi Rantala
Timo Salpavaara
Jarmo Verho
Veikko Surakka
Jukka Lekkala
Antti Vehkaoja
Philipp Müller
author_facet Anton Kondratev
Katri Salminen
Jussi Rantala
Timo Salpavaara
Jarmo Verho
Veikko Surakka
Jukka Lekkala
Antti Vehkaoja
Philipp Müller
author_sort Anton Kondratev
collection DOAJ
description When on-site classification of volatile organic compounds (VOCs) is required, a portable ion mobility spectrometer (IMS) is a suitable choice. However, the IMS readings often show transient phases before they stabilize. Even so the importance of transient phase and features extracted from it has been highlighted in the literature, it has not, to our knowledge, been used for IMS-based classification so far. This paper analyzes whether change point detection algorithms with low computational complexity can separate transient and stable phases in IMS readings. The algorithms were tested on IMS data from different types of mushrooms. All algorithms successfully detected switches from transient to stable phase. The most accurate results were provided by the previously proposed multivariate max-CUSUM algorithm and the matrix form CUSUM algorithm, which is developed in this paper.
first_indexed 2024-12-12T04:59:44Z
format Article
id doaj.art-5c45c81b21274fd1bb11c8886afea74f
institution Directory Open Access Journal
issn 2590-0056
language English
last_indexed 2024-12-12T04:59:44Z
publishDate 2022-07-01
publisher Elsevier
record_format Article
series Array
spelling doaj.art-5c45c81b21274fd1bb11c8886afea74f2022-12-22T00:37:16ZengElsevierArray2590-00562022-07-0114100151A comparison of online methods for change point detection in ion-mobility spectrometry dataAnton Kondratev0Katri Salminen1Jussi Rantala2Timo Salpavaara3Jarmo Verho4Veikko Surakka5Jukka Lekkala6Antti Vehkaoja7Philipp Müller8Tampere University, Korkeakoulunkatu 7, Tampere, 33720, Finland; Corresponding author.Tampere University of Applied Sciences, Kuntokatu 3, Tampere, 33520, FinlandTampere University, Korkeakoulunkatu 7, Tampere, 33720, FinlandTampere University, Korkeakoulunkatu 7, Tampere, 33720, FinlandTampere University, Korkeakoulunkatu 7, Tampere, 33720, FinlandTampere University, Korkeakoulunkatu 7, Tampere, 33720, FinlandTampere University, Korkeakoulunkatu 7, Tampere, 33720, FinlandTampere University, Korkeakoulunkatu 7, Tampere, 33720, FinlandTampere University, Korkeakoulunkatu 7, Tampere, 33720, FinlandWhen on-site classification of volatile organic compounds (VOCs) is required, a portable ion mobility spectrometer (IMS) is a suitable choice. However, the IMS readings often show transient phases before they stabilize. Even so the importance of transient phase and features extracted from it has been highlighted in the literature, it has not, to our knowledge, been used for IMS-based classification so far. This paper analyzes whether change point detection algorithms with low computational complexity can separate transient and stable phases in IMS readings. The algorithms were tested on IMS data from different types of mushrooms. All algorithms successfully detected switches from transient to stable phase. The most accurate results were provided by the previously proposed multivariate max-CUSUM algorithm and the matrix form CUSUM algorithm, which is developed in this paper.http://www.sciencedirect.com/science/article/pii/S2590005622000182AlgorithmsChange detectionIon mobility spectrometry
spellingShingle Anton Kondratev
Katri Salminen
Jussi Rantala
Timo Salpavaara
Jarmo Verho
Veikko Surakka
Jukka Lekkala
Antti Vehkaoja
Philipp Müller
A comparison of online methods for change point detection in ion-mobility spectrometry data
Array
Algorithms
Change detection
Ion mobility spectrometry
title A comparison of online methods for change point detection in ion-mobility spectrometry data
title_full A comparison of online methods for change point detection in ion-mobility spectrometry data
title_fullStr A comparison of online methods for change point detection in ion-mobility spectrometry data
title_full_unstemmed A comparison of online methods for change point detection in ion-mobility spectrometry data
title_short A comparison of online methods for change point detection in ion-mobility spectrometry data
title_sort comparison of online methods for change point detection in ion mobility spectrometry data
topic Algorithms
Change detection
Ion mobility spectrometry
url http://www.sciencedirect.com/science/article/pii/S2590005622000182
work_keys_str_mv AT antonkondratev acomparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT katrisalminen acomparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT jussirantala acomparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT timosalpavaara acomparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT jarmoverho acomparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT veikkosurakka acomparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT jukkalekkala acomparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT anttivehkaoja acomparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT philippmuller acomparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT antonkondratev comparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT katrisalminen comparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT jussirantala comparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT timosalpavaara comparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT jarmoverho comparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT veikkosurakka comparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT jukkalekkala comparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT anttivehkaoja comparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata
AT philippmuller comparisonofonlinemethodsforchangepointdetectioninionmobilityspectrometrydata