Summary: | Submerged inlets have been widely used in advanced aircraft due to their excellent stealth characteristics, but they also suffer from poor aerodynamic performance. To improve the aerodynamic efficiency while maintaining stealth capabilities, this paper proposes a design scheme for a front auxiliary inlet with an inlet grille. The front auxiliary inlet is connected to the main inlet to form a composite inlet system. The low-energy upstream airflow that accumulates at the inlet is guided by the front auxiliary inlet to flow into the mainstream, resulting in a stable and high-quality airflow. A certain type of cruise missile was used as the research subject, and intake systems with and without front auxiliary inlets were constructed to compare the inlet performance of the two configurations using the CFD method. Additionally, a sensitivity analysis of the main design parameters of the front auxiliary inlet was carried out. The study reveals that a reasonable design of the front auxiliary inlet can prevent low-energy airflow, which accumulates on the missile body surface, from directly entering the inlet. Moreover, the front auxiliary inlet can inject additional mechanical energy into the low-energy airflow, inhibit airflow separation, and improve the uniformity of the flow field. Under cruise conditions, the total pressure recovery coefficient of the front auxiliary inlet configuration increased by 12.39% compared to the model without a front auxiliary inlet configuration. Furthermore, the total pressure distortion index was reduced by 47.24%.
|