Entropy generation and thermal analysis of nanofluid flow inside the evacuated tube solar collector

Abstract In the current investigation, the thermal and thermodynamic behavior of a buoyancy-driven evacuated tube solar collector (ETSC) has undergone precise evaluation, and the efficacy of nanoparticle dispersion in the testing fluid was scrutinized. The natural convection process was analyzed in...

Full description

Bibliographic Details
Main Authors: S. Mojtaba Tabarhoseini, M. Sheikholeslami
Format: Article
Language:English
Published: Nature Portfolio 2022-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-05263-2
Description
Summary:Abstract In the current investigation, the thermal and thermodynamic behavior of a buoyancy-driven evacuated tube solar collector (ETSC) has undergone precise evaluation, and the efficacy of nanoparticle dispersion in the testing fluid was scrutinized. The natural convection process was analyzed in different vertical sections of the absorber tube. The outputs for water and the utilized nanofluid were compared at various cutting planes along the tube during the simulation time. In this problem, CuO nanoparticles with optimum thermal properties were distributed in the base fluid. According to the surveyed results, the temperature distribution analysis illustrates that the mean wall temperature experiences more enhancement when the nanofluid is used. The comparison of the heat transfer coefficient between the two simulated cases show the competency of utilizing CuO- $${\mathrm{H}}_{2}\mathrm{O}$$ H 2 O nanofluid and highlight its crucial character in improving the thermal treatment of the operate fluid through the collector pipe. Based on irreversibility assessment, the irreversibility due to fluid friction rises when the nanofluid is applied during the flow time. In contrast, the entropy generation of pure water owing to heat transfer surpasses the case with nanofluid. More specifically, the heat transfer entropy generation experience a reduction of about 6.3% (0.143–0.134 W/K) by utilization of CuO with a volume fraction of 5% after 1 h of flow time, whereas the entropy generation by fluid viscosity enhances up to 23% when the nanofluid is applied in the system. The irreversibility originated from heating and fluid viscosity has significant difference in value, owing to the fluid’s low-velocity range in the natural convection process.
ISSN:2045-2322