Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output
Faced with potential harm, individuals must estimate the probability of threat and initiate an appropriate fear response. In the prevailing view, threat probability estimates are relayed to the ventrolateral periaqueductal gray (vlPAG) to organize fear output. A straightforward prediction is that vl...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2019-03-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/45013 |
_version_ | 1818023881239166976 |
---|---|
author | Kristina M Wright Michael A McDannald |
author_facet | Kristina M Wright Michael A McDannald |
author_sort | Kristina M Wright |
collection | DOAJ |
description | Faced with potential harm, individuals must estimate the probability of threat and initiate an appropriate fear response. In the prevailing view, threat probability estimates are relayed to the ventrolateral periaqueductal gray (vlPAG) to organize fear output. A straightforward prediction is that vlPAG single-unit activity reflects fear output, invariant of threat probability. We recorded vlPAG single-unit activity in male, Long Evans rats undergoing fear discrimination. Three 10 s auditory cues predicted unique foot shock probabilities: danger (p=1.00), uncertainty (p=0.375) and safety (p=0.00). Fear output was measured by suppression of reward seeking over the entire cue and in one-second cue intervals. Cued fear non-linearly scaled to threat probability and cue-responsive vlPAG single-units scaled their firing on one of two timescales: at onset or ramping toward shock delivery. VlPAG onset activity reflected threat probability, invariant of fear output, while ramping activity reflected both signals with threat probability prioritized. |
first_indexed | 2024-12-10T03:51:22Z |
format | Article |
id | doaj.art-5c791c96c609470faa4b159a1f97392f |
institution | Directory Open Access Journal |
issn | 2050-084X |
language | English |
last_indexed | 2024-12-10T03:51:22Z |
publishDate | 2019-03-01 |
publisher | eLife Sciences Publications Ltd |
record_format | Article |
series | eLife |
spelling | doaj.art-5c791c96c609470faa4b159a1f97392f2022-12-22T02:03:14ZengeLife Sciences Publications LtdeLife2050-084X2019-03-01810.7554/eLife.45013Ventrolateral periaqueductal gray neurons prioritize threat probability over fear outputKristina M Wright0https://orcid.org/0000-0003-1446-3009Michael A McDannald1https://orcid.org/0000-0001-8525-1260Psychology Department, Boston College, Chestnut Hill, United StatesPsychology Department, Boston College, Chestnut Hill, United StatesFaced with potential harm, individuals must estimate the probability of threat and initiate an appropriate fear response. In the prevailing view, threat probability estimates are relayed to the ventrolateral periaqueductal gray (vlPAG) to organize fear output. A straightforward prediction is that vlPAG single-unit activity reflects fear output, invariant of threat probability. We recorded vlPAG single-unit activity in male, Long Evans rats undergoing fear discrimination. Three 10 s auditory cues predicted unique foot shock probabilities: danger (p=1.00), uncertainty (p=0.375) and safety (p=0.00). Fear output was measured by suppression of reward seeking over the entire cue and in one-second cue intervals. Cued fear non-linearly scaled to threat probability and cue-responsive vlPAG single-units scaled their firing on one of two timescales: at onset or ramping toward shock delivery. VlPAG onset activity reflected threat probability, invariant of fear output, while ramping activity reflected both signals with threat probability prioritized.https://elifesciences.org/articles/45013single-unitthreatfearconditioned suppressionmidbrainassociative learning |
spellingShingle | Kristina M Wright Michael A McDannald Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output eLife single-unit threat fear conditioned suppression midbrain associative learning |
title | Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output |
title_full | Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output |
title_fullStr | Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output |
title_full_unstemmed | Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output |
title_short | Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output |
title_sort | ventrolateral periaqueductal gray neurons prioritize threat probability over fear output |
topic | single-unit threat fear conditioned suppression midbrain associative learning |
url | https://elifesciences.org/articles/45013 |
work_keys_str_mv | AT kristinamwright ventrolateralperiaqueductalgrayneuronsprioritizethreatprobabilityoverfearoutput AT michaelamcdannald ventrolateralperiaqueductalgrayneuronsprioritizethreatprobabilityoverfearoutput |