Regularized Auto-Encoder-Based Separation of Defects from Backgrounds for Inspecting Display Devices
We investigated a novel method for separating defects from the background for inspecting display devices. Separation of defects has important applications such as determining whether the detected defects are truly defective and the quantification of the degree of defectiveness. Although many studies...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-05-01
|
Series: | Electronics |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-9292/8/5/533 |
_version_ | 1811187578507886592 |
---|---|
author | Heeyeon Jo Jeongtae Kim |
author_facet | Heeyeon Jo Jeongtae Kim |
author_sort | Heeyeon Jo |
collection | DOAJ |
description | We investigated a novel method for separating defects from the background for inspecting display devices. Separation of defects has important applications such as determining whether the detected defects are truly defective and the quantification of the degree of defectiveness. Although many studies on estimating patterned background have been conducted, the existing studies are mainly based on the approach of approximation by low-rank matrices. Because the conventional methods face problems such as imperfect reconstruction and difficulty of selecting the bases for low-rank approximation, we have studied a deep-learning-based foreground reconstruction method that is based on the auto-encoder structure with a regression layer for the output. In the experimental studies carried out using mobile display panels, the proposed method showed significantly improved performance compared to the existing singular value decomposition method. We believe that the proposed method could be useful not only for inspecting display devices but also for many applications that involve the detection of defects in the presence of a textured background. |
first_indexed | 2024-04-11T14:04:48Z |
format | Article |
id | doaj.art-5c7f134cb7ba45f98774a8e536dafdda |
institution | Directory Open Access Journal |
issn | 2079-9292 |
language | English |
last_indexed | 2024-04-11T14:04:48Z |
publishDate | 2019-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Electronics |
spelling | doaj.art-5c7f134cb7ba45f98774a8e536dafdda2022-12-22T04:19:55ZengMDPI AGElectronics2079-92922019-05-018553310.3390/electronics8050533electronics8050533Regularized Auto-Encoder-Based Separation of Defects from Backgrounds for Inspecting Display DevicesHeeyeon Jo0Jeongtae Kim1Electronics and Electrical Engineering, Ewha Womans University, Seoul 03760, KoreaElectronics and Electrical Engineering, Ewha Womans University, Seoul 03760, KoreaWe investigated a novel method for separating defects from the background for inspecting display devices. Separation of defects has important applications such as determining whether the detected defects are truly defective and the quantification of the degree of defectiveness. Although many studies on estimating patterned background have been conducted, the existing studies are mainly based on the approach of approximation by low-rank matrices. Because the conventional methods face problems such as imperfect reconstruction and difficulty of selecting the bases for low-rank approximation, we have studied a deep-learning-based foreground reconstruction method that is based on the auto-encoder structure with a regression layer for the output. In the experimental studies carried out using mobile display panels, the proposed method showed significantly improved performance compared to the existing singular value decomposition method. We believe that the proposed method could be useful not only for inspecting display devices but also for many applications that involve the detection of defects in the presence of a textured background.https://www.mdpi.com/2079-9292/8/5/533defect separationdefect inspectionmachine visiondeep learningobject detection |
spellingShingle | Heeyeon Jo Jeongtae Kim Regularized Auto-Encoder-Based Separation of Defects from Backgrounds for Inspecting Display Devices Electronics defect separation defect inspection machine vision deep learning object detection |
title | Regularized Auto-Encoder-Based Separation of Defects from Backgrounds for Inspecting Display Devices |
title_full | Regularized Auto-Encoder-Based Separation of Defects from Backgrounds for Inspecting Display Devices |
title_fullStr | Regularized Auto-Encoder-Based Separation of Defects from Backgrounds for Inspecting Display Devices |
title_full_unstemmed | Regularized Auto-Encoder-Based Separation of Defects from Backgrounds for Inspecting Display Devices |
title_short | Regularized Auto-Encoder-Based Separation of Defects from Backgrounds for Inspecting Display Devices |
title_sort | regularized auto encoder based separation of defects from backgrounds for inspecting display devices |
topic | defect separation defect inspection machine vision deep learning object detection |
url | https://www.mdpi.com/2079-9292/8/5/533 |
work_keys_str_mv | AT heeyeonjo regularizedautoencoderbasedseparationofdefectsfrombackgroundsforinspectingdisplaydevices AT jeongtaekim regularizedautoencoderbasedseparationofdefectsfrombackgroundsforinspectingdisplaydevices |