Metrics and Strategies for Design of DC Bias Resilient Transformers

Geomagnetic disturbances (GMDs) give rise to geomagnetically induced currents (GICs) on the earth’s surface which find their way into power systems via grounded transformer neutrals. The quasi-dc nature of the GICs results in half-cycle saturation of the power grid transformers which in t...

Full description

Bibliographic Details
Main Authors: Akhil Prasad, Scott D. Sudhoff, Todd C. Monson, Ganapathi Subramania
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Open Access Journal of Power and Energy
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10214168/
Description
Summary:Geomagnetic disturbances (GMDs) give rise to geomagnetically induced currents (GICs) on the earth’s surface which find their way into power systems via grounded transformer neutrals. The quasi-dc nature of the GICs results in half-cycle saturation of the power grid transformers which in turn results in transformer failure, life reduction, and other adverse effects. Therefore, transformers need to be more resilient to dc excitation. This paper sets forth dc immunity metrics for transformers. Furthermore, this paper sets forth a novel transformer architecture and a design methodology which employs the dc immunity metrics to make it more resilient to dc excitation. This is demonstrated using a time-stepping 2D finite element analysis (FEA) simulation. It was found that a relatively small change in the core geometry significantly increases transformer resiliency with respect to dc excitation.
ISSN:2687-7910