A Glove-Wearing Detection Algorithm Based on Improved YOLOv8

Wearing gloves during machinery operation in workshops is essential for preventing accidental injuries, such as mechanical damage and burns. Ensuring that workers are wearing gloves is a key strategy for accident prevention. Consequently, this study proposes a glove detection algorithm called YOLOv8...

Full description

Bibliographic Details
Main Authors: Shichu Li, Huiping Huang, Xiangyin Meng, Mushuai Wang, Yang Li, Lei Xie
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/24/9906
Description
Summary:Wearing gloves during machinery operation in workshops is essential for preventing accidental injuries, such as mechanical damage and burns. Ensuring that workers are wearing gloves is a key strategy for accident prevention. Consequently, this study proposes a glove detection algorithm called YOLOv8-AFPN-M-C2f based on YOLOv8, offering swifter detection speeds, lower computational demands, and enhanced accuracy for workshop scenarios. This research innovates by substituting the head of YOLOv8 with the AFPN-M-C2f network, amplifying the pathways for feature vector propagation, and mitigating semantic discrepancies between non-adjacent feature layers. Additionally, the introduction of a superficial feature layer enriches surface feature information, augmenting the model’s sensitivity to smaller objects. To assess the performance of the YOLOv8-AFPN-M-C2f model, this study conducted multiple experiments using a factory glove detection dataset compiled for this study. The results indicate that the enhanced YOLOv8 model surpasses other network models. Compared to the baseline YOLOv8 model, the refined version shows a 2.6% increase in mAP@50%, a 63.8% rise in FPS, and a 13% reduction in the number of parameters. This research contributes an effective solution for the detection of glove adherence.
ISSN:1424-8220