Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation

Abstract Immune checkpoint blockade therapies targeting the PD-L1/PD-1 axis have demonstrated clear clinical benefits. Improved understanding of the underlying regulatory mechanisms might contribute new insights into immunotherapy. Here, we identify transmembrane and ubiquitin-like domain-containing...

Full description

Bibliographic Details
Main Authors: Chengyu Shi, Ying Wang, Minjie Wu, Yu Chen, Fangzhou Liu, Zheyuan Shen, Yiran Wang, Shaofang Xie, Yingying Shen, Lingjie Sang, Zhen Zhang, Zerui Gao, Luojia Yang, Lei Qu, Zuozhen Yang, Xinyu He, Yu Guo, Chenghao Pan, Jinxin Che, Huaiqiang Ju, Jian Liu, Zhijian Cai, Qingfeng Yan, Luyang Yu, Liangjing Wang, Xiaowu Dong, Pinglong Xu, Jianzhong Shao, Yang Liu, Xu Li, Wenqi Wang, Ruhong Zhou, Tianhua Zhou, Aifu Lin
Format: Article
Language:English
Published: Nature Portfolio 2022-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-022-34346-x
_version_ 1826932668770549760
author Chengyu Shi
Ying Wang
Minjie Wu
Yu Chen
Fangzhou Liu
Zheyuan Shen
Yiran Wang
Shaofang Xie
Yingying Shen
Lingjie Sang
Zhen Zhang
Zerui Gao
Luojia Yang
Lei Qu
Zuozhen Yang
Xinyu He
Yu Guo
Chenghao Pan
Jinxin Che
Huaiqiang Ju
Jian Liu
Zhijian Cai
Qingfeng Yan
Luyang Yu
Liangjing Wang
Xiaowu Dong
Pinglong Xu
Jianzhong Shao
Yang Liu
Xu Li
Wenqi Wang
Ruhong Zhou
Tianhua Zhou
Aifu Lin
author_facet Chengyu Shi
Ying Wang
Minjie Wu
Yu Chen
Fangzhou Liu
Zheyuan Shen
Yiran Wang
Shaofang Xie
Yingying Shen
Lingjie Sang
Zhen Zhang
Zerui Gao
Luojia Yang
Lei Qu
Zuozhen Yang
Xinyu He
Yu Guo
Chenghao Pan
Jinxin Che
Huaiqiang Ju
Jian Liu
Zhijian Cai
Qingfeng Yan
Luyang Yu
Liangjing Wang
Xiaowu Dong
Pinglong Xu
Jianzhong Shao
Yang Liu
Xu Li
Wenqi Wang
Ruhong Zhou
Tianhua Zhou
Aifu Lin
author_sort Chengyu Shi
collection DOAJ
description Abstract Immune checkpoint blockade therapies targeting the PD-L1/PD-1 axis have demonstrated clear clinical benefits. Improved understanding of the underlying regulatory mechanisms might contribute new insights into immunotherapy. Here, we identify transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) as a modulator of PD-L1 post-translational modifications in tumor cells. Mechanistically, TMUB1 competes with HECT, UBA and WWE domain-containing protein 1 (HUWE1), a E3 ubiquitin ligase, to interact with PD-L1 and inhibit its polyubiquitination at K281 in the endoplasmic reticulum. Moreover, TMUB1 enhances PD-L1 N-glycosylation and stability by recruiting STT3A, thereby promoting PD-L1 maturation and tumor immune evasion. TMUB1 protein levels correlate with PD-L1 expression in human tumor tissue, with high expression being associated with poor patient survival rates. A synthetic peptide engineered to compete with TMUB1 significantly promotes antitumor immunity and suppresses tumor growth in mice. These findings identify TMUB1 as a promising immunotherapeutic target.
first_indexed 2024-04-11T06:55:42Z
format Article
id doaj.art-5c9afa68434c4156b9404910dc8406e1
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2025-02-17T17:18:08Z
publishDate 2022-11-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-5c9afa68434c4156b9404910dc8406e12024-12-15T12:09:56ZengNature PortfolioNature Communications2041-17232022-11-0113111810.1038/s41467-022-34346-xPromoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylationChengyu Shi0Ying Wang1Minjie Wu2Yu Chen3Fangzhou Liu4Zheyuan Shen5Yiran Wang6Shaofang Xie7Yingying Shen8Lingjie Sang9Zhen Zhang10Zerui Gao11Luojia Yang12Lei Qu13Zuozhen Yang14Xinyu He15Yu Guo16Chenghao Pan17Jinxin Che18Huaiqiang Ju19Jian Liu20Zhijian Cai21Qingfeng Yan22Luyang Yu23Liangjing Wang24Xiaowu Dong25Pinglong Xu26Jianzhong Shao27Yang Liu28Xu Li29Wenqi Wang30Ruhong Zhou31Tianhua Zhou32Aifu Lin33MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityInnovation Institute for Artificial Intelligence in Medicine, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityKey Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake UniversityInstitute of Immunology, Zhejiang University School of MedicineMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityHangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang UniversityInnovation Institute for Artificial Intelligence in Medicine, Zhejiang UniversityHangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang UniversitySun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineZhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang UniversityInstitute of Immunology, Zhejiang University School of MedicineMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityDepartment of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang UniversityInnovation Institute for Artificial Intelligence in Medicine, Zhejiang UniversityMOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityInstitute of Immunology, Zhejiang University School of MedicineKey Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake UniversityDepartment of Developmental and Cell Biology, University of CaliforniaMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityCancer Center, Zhejiang UniversityMOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang UniversityAbstract Immune checkpoint blockade therapies targeting the PD-L1/PD-1 axis have demonstrated clear clinical benefits. Improved understanding of the underlying regulatory mechanisms might contribute new insights into immunotherapy. Here, we identify transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) as a modulator of PD-L1 post-translational modifications in tumor cells. Mechanistically, TMUB1 competes with HECT, UBA and WWE domain-containing protein 1 (HUWE1), a E3 ubiquitin ligase, to interact with PD-L1 and inhibit its polyubiquitination at K281 in the endoplasmic reticulum. Moreover, TMUB1 enhances PD-L1 N-glycosylation and stability by recruiting STT3A, thereby promoting PD-L1 maturation and tumor immune evasion. TMUB1 protein levels correlate with PD-L1 expression in human tumor tissue, with high expression being associated with poor patient survival rates. A synthetic peptide engineered to compete with TMUB1 significantly promotes antitumor immunity and suppresses tumor growth in mice. These findings identify TMUB1 as a promising immunotherapeutic target.https://doi.org/10.1038/s41467-022-34346-x
spellingShingle Chengyu Shi
Ying Wang
Minjie Wu
Yu Chen
Fangzhou Liu
Zheyuan Shen
Yiran Wang
Shaofang Xie
Yingying Shen
Lingjie Sang
Zhen Zhang
Zerui Gao
Luojia Yang
Lei Qu
Zuozhen Yang
Xinyu He
Yu Guo
Chenghao Pan
Jinxin Che
Huaiqiang Ju
Jian Liu
Zhijian Cai
Qingfeng Yan
Luyang Yu
Liangjing Wang
Xiaowu Dong
Pinglong Xu
Jianzhong Shao
Yang Liu
Xu Li
Wenqi Wang
Ruhong Zhou
Tianhua Zhou
Aifu Lin
Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation
Nature Communications
title Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation
title_full Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation
title_fullStr Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation
title_full_unstemmed Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation
title_short Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation
title_sort promoting anti tumor immunity by targeting tmub1 to modulate pd l1 polyubiquitination and glycosylation
url https://doi.org/10.1038/s41467-022-34346-x
work_keys_str_mv AT chengyushi promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT yingwang promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT minjiewu promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT yuchen promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT fangzhouliu promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT zheyuanshen promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT yiranwang promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT shaofangxie promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT yingyingshen promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT lingjiesang promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT zhenzhang promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT zeruigao promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT luojiayang promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT leiqu promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT zuozhenyang promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT xinyuhe promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT yuguo promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT chenghaopan promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT jinxinche promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT huaiqiangju promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT jianliu promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT zhijiancai promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT qingfengyan promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT luyangyu promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT liangjingwang promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT xiaowudong promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT pinglongxu promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT jianzhongshao promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT yangliu promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT xuli promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT wenqiwang promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT ruhongzhou promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT tianhuazhou promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation
AT aifulin promotingantitumorimmunitybytargetingtmub1tomodulatepdl1polyubiquitinationandglycosylation