Soil activity behaviors after farming techniques application in The Chammak olive tree field
The olive tree arranges no more water reserve that can be exploited during extremely dry periods. A failure of the olive yields observed during the last two decades. The annual production decreased from 150 000 tons to 50 000 tons of olives in the south of Tunisia. This degradation results, in fac...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Arabic |
Published: |
Arid regions institute
2022-12-01
|
Series: | Journal of Oasis Agriculture and Sustainable Development |
Subjects: | |
Online Access: | http://www.joasdjournal.org/index.php/joasd/article/view/62 |
_version_ | 1797207941632229376 |
---|---|
author | Hayfa Rajhi Habib Bousnina Mounir Abichou |
author_facet | Hayfa Rajhi Habib Bousnina Mounir Abichou |
author_sort | Hayfa Rajhi |
collection | DOAJ |
description |
The olive tree arranges no more water reserve that can be exploited during extremely dry periods. A failure of the olive yields observed during the last two decades. The annual production decreased from 150 000 tons to 50 000 tons of olives in the south of Tunisia. This degradation results, in fact from an obvious reduction in the biological activity of the ground. A new Strategy was employed to improve the organic status and restore the biological activity of the soil ground of the long-term. We have evaluated the effect of the of different plot treatment. A plot of olive tree speeded with 200 m3/ha dose of OMW during 10 years, P4; a plot of olive tree treated with tillage accompanied by 50 m3/ha dose OMW spreading lasting only a one year, P5 and a plot of olive tree cultivated with the introduction of the fig tree in parallel, P3. Untouched ground was used as control plot, P0. A comparison of these plots with a degraded ground of olive tree implanted since 1900, P2 and other ground degraded during 10 years, P1. The plot treated with OMW showed an OM value close to the value founded with P0 (Control Plot). The Phytotoxcity measured via germination index GI (percentage) was determined; an important increment ranged from 200% to 230% was obtained in the P3 and P5, respectively. Correlation analyses, among physiochemical parameters of soil and microbial biomass indicated several positive significant trends. The highest significant correlation was found between OM and TAMF (r=0.999, p<0.001). These results corroborate the notion that the microbial community structure is a good indicator of soil quality and the effects of different management practices, because the microorganisms respond against changes in soil management more rapidly than chemical or physical soil properties. However, in this work we found a negative correlation between respiration soil activity (Resp) and with OM (r=-0.533, p<0.05). In fact, CO2 sequestration took place. Indeed, increasing soil OM enhances the sequestering carbon dioxide (CO2) to mitigate anthropogenic greenhouse gas (GHG) emissions.
|
first_indexed | 2024-03-11T18:10:06Z |
format | Article |
id | doaj.art-5caf31038a20443c9493c45221c30a0e |
institution | Directory Open Access Journal |
issn | 2724-699X 2724-7007 |
language | Arabic |
last_indexed | 2024-04-24T09:30:55Z |
publishDate | 2022-12-01 |
publisher | Arid regions institute |
record_format | Article |
series | Journal of Oasis Agriculture and Sustainable Development |
spelling | doaj.art-5caf31038a20443c9493c45221c30a0e2024-04-15T13:58:41ZaraArid regions instituteJournal of Oasis Agriculture and Sustainable Development2724-699X2724-70072022-12-0144Soil activity behaviors after farming techniques application in The Chammak olive tree field Hayfa RajhiHabib BousninaMounir Abichou The olive tree arranges no more water reserve that can be exploited during extremely dry periods. A failure of the olive yields observed during the last two decades. The annual production decreased from 150 000 tons to 50 000 tons of olives in the south of Tunisia. This degradation results, in fact from an obvious reduction in the biological activity of the ground. A new Strategy was employed to improve the organic status and restore the biological activity of the soil ground of the long-term. We have evaluated the effect of the of different plot treatment. A plot of olive tree speeded with 200 m3/ha dose of OMW during 10 years, P4; a plot of olive tree treated with tillage accompanied by 50 m3/ha dose OMW spreading lasting only a one year, P5 and a plot of olive tree cultivated with the introduction of the fig tree in parallel, P3. Untouched ground was used as control plot, P0. A comparison of these plots with a degraded ground of olive tree implanted since 1900, P2 and other ground degraded during 10 years, P1. The plot treated with OMW showed an OM value close to the value founded with P0 (Control Plot). The Phytotoxcity measured via germination index GI (percentage) was determined; an important increment ranged from 200% to 230% was obtained in the P3 and P5, respectively. Correlation analyses, among physiochemical parameters of soil and microbial biomass indicated several positive significant trends. The highest significant correlation was found between OM and TAMF (r=0.999, p<0.001). These results corroborate the notion that the microbial community structure is a good indicator of soil quality and the effects of different management practices, because the microorganisms respond against changes in soil management more rapidly than chemical or physical soil properties. However, in this work we found a negative correlation between respiration soil activity (Resp) and with OM (r=-0.533, p<0.05). In fact, CO2 sequestration took place. Indeed, increasing soil OM enhances the sequestering carbon dioxide (CO2) to mitigate anthropogenic greenhouse gas (GHG) emissions. http://www.joasdjournal.org/index.php/joasd/article/view/62Dry groundsoil treatmentOMWTillageSoil respirationSoil phytotoxicity |
spellingShingle | Hayfa Rajhi Habib Bousnina Mounir Abichou Soil activity behaviors after farming techniques application in The Chammak olive tree field Journal of Oasis Agriculture and Sustainable Development Dry ground soil treatment OMW Tillage Soil respiration Soil phytotoxicity |
title | Soil activity behaviors after farming techniques application in The Chammak olive tree field |
title_full | Soil activity behaviors after farming techniques application in The Chammak olive tree field |
title_fullStr | Soil activity behaviors after farming techniques application in The Chammak olive tree field |
title_full_unstemmed | Soil activity behaviors after farming techniques application in The Chammak olive tree field |
title_short | Soil activity behaviors after farming techniques application in The Chammak olive tree field |
title_sort | soil activity behaviors after farming techniques application in the chammak olive tree field |
topic | Dry ground soil treatment OMW Tillage Soil respiration Soil phytotoxicity |
url | http://www.joasdjournal.org/index.php/joasd/article/view/62 |
work_keys_str_mv | AT hayfarajhi soilactivitybehaviorsafterfarmingtechniquesapplicationinthechammakolivetreefield AT habibbousnina soilactivitybehaviorsafterfarmingtechniquesapplicationinthechammakolivetreefield AT mounirabichou soilactivitybehaviorsafterfarmingtechniquesapplicationinthechammakolivetreefield |