Summary: | ABSTRACT: Objectives: The aim of this study was to characterize the blaKPC-33 in a ST15-K19 ceftazidime-avibactam (CAZ-AVI)-resistant Klebsiella pneumoniae strain after the antibiotic CAZ-AVI was approved for use in Wuxi No. 2 People's Hospital, China. Methods: Antimicrobial susceptibility testing was performed by the microdilution broth method. Whole genome sequencing (WGS) was performed using PacBio II and MiSeq sequencers. High-quality reads were assembled using the SOAPdenovo and GapCloser v1.12, and genome annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP). Genomic characteristics were analysed by using bioinformatics methods. Results: K. pneumoniae strain KPHRJ showed resistance to CAZ-AVI. WGS analysis showed that strain KPHRJ had one 5 536 506 bp chromosome (57.25% G+C content) and one plasmid (133 451 bp, G+C 54.29%). KPHRJ was classified as ST15 and K19 serotype. Resistome analysis showed that KPHRJ carries seven antimicrobial resistance genes (ARGs). WGS analysis and conjugation experiments demonstrated that the blaKPC-33 gene was carried by plasmid pKPHRJ, flanked by two copies of IS26 mobile elements (IS26-ISKpn27-blaKPC-33-ISKpn6-korC-TnAs1-tetR-tetA-Tn3-IS26). Besides these acquired resistance genes, mutations in porin protein-coding genes, such as OmpK36 and OmpK37, which may reduce susceptibility to the CAZ-AVI, were also identified from the genome. Conclusion: Here, we present the WGS of a CAZ-AVI resistant K. pneumoniae isolate, strain KPHRJ, with capsular serotype K19 and belonging to ST15. CAZ-AVI resistance is likely conferred by a KPC-2 variant, blaKPC-33 and mutations in porin-coding genes. We speculate that the approval of the CAZ-AVI in hospital could contribute to the emergence of these genomic features by providing a selective pressure leading to the emergence of CAZ-AVI resistant bacteria.
|