A study on the differential of solid lung adenocarcinoma and tuberculous granuloma nodules in CT images by Radiomics machine learning
Abstract To study the classification efficiency of using texture feature machine learning method in distinguishing solid lung adenocarcinoma (SADC) and tuberculous granulomatous nodules (TGN) that appear as solid nodules (SN) in non-enhanced CT images. 200 patients with SADC and TGN who underwent th...
| Váldodahkkit: | Huibin Tan, Ye Wang, Yuanliang Jiang, Hanhan Li, Tao You, Tingting Fu, Jiaheng Peng, Yuxi Tan, Ran Lu, Biwen Peng, Wencai Huang, Fei Xiong |
|---|---|
| Materiálatiipa: | Artihkal |
| Giella: | English |
| Almmustuhtton: |
Nature Portfolio
2023-04-01
|
| Ráidu: | Scientific Reports |
| Liŋkkat: | https://doi.org/10.1038/s41598-023-32979-6 |
Geahča maid
-
Predicting pathological grade of stage I pulmonary adenocarcinoma: a CT radiomics approach
Dahkki: Xiaoni Huang, et al.
Almmustuhtton: (2024-09-01) -
Tuberculous Granuloma
Dahkki: T M Uma Maheswari, et al.
Almmustuhtton: (2011-01-01) -
Radiomics combined with clinical features in distinguishing non-calcifying tuberculosis granuloma and lung adenocarcinoma in small pulmonary nodules
Dahkki: Qing Dong, et al.
Almmustuhtton: (2022-10-01) -
Clinical and CT Radiomics Nomogram for Preoperative Differentiation of Pulmonary Adenocarcinoma From Tuberculoma in Solitary Solid Nodule
Dahkki: Yaoyao Zhuo, et al.
Almmustuhtton: (2021-10-01) -
Comparison of Radiomic Models Based on Low-Dose and Standard-Dose CT for Prediction of Adenocarcinomas and Benign Lesions in Solid Pulmonary Nodules
Dahkki: Jieke Liu, et al.
Almmustuhtton: (2021-02-01)