Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest

The 2013 Data Fusion Contest organized by the Data Fusion Technical Committee (DFTC) of the IEEE Geoscience and Remote Sensing Society aimed at investigating the synergistic use of hyperspectral and Light Detection And Ranging (LiDAR) data. The data sets distributed to the participants during the Co...

Full description

Bibliographic Details
Main Authors: Christian Debes, Andreas Merentitis, Roel Heremans, Jurgen Hahn, Nikolaos Frangiadakis, Tim van Kasteren, Wenzhi Liao, Rik Bellens, Aleksandra Pizurica, Sidharta Gautama, Wilfried Philips, Saurabh Prasad, Qian Du, Fabio Pacifici
Format: Article
Language:English
Published: IEEE 2014-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/6776408/
_version_ 1819320513016627200
author Christian Debes
Andreas Merentitis
Roel Heremans
Jurgen Hahn
Nikolaos Frangiadakis
Tim van Kasteren
Wenzhi Liao
Rik Bellens
Aleksandra Pizurica
Sidharta Gautama
Wilfried Philips
Saurabh Prasad
Qian Du
Fabio Pacifici
author_facet Christian Debes
Andreas Merentitis
Roel Heremans
Jurgen Hahn
Nikolaos Frangiadakis
Tim van Kasteren
Wenzhi Liao
Rik Bellens
Aleksandra Pizurica
Sidharta Gautama
Wilfried Philips
Saurabh Prasad
Qian Du
Fabio Pacifici
author_sort Christian Debes
collection DOAJ
description The 2013 Data Fusion Contest organized by the Data Fusion Technical Committee (DFTC) of the IEEE Geoscience and Remote Sensing Society aimed at investigating the synergistic use of hyperspectral and Light Detection And Ranging (LiDAR) data. The data sets distributed to the participants during the Contest, a hyperspectral imagery and the corresponding LiDAR-derived digital surface model (DSM), were acquired by the NSF-funded Center for Airborne Laser Mapping over the University of Houston campus and its neighboring area in the summer of 2012. This paper highlights the two awarded research contributions, which investigated different approaches for the fusion of hyperspectral and LiDAR data, including a combined unsupervised and supervised classification scheme, and a graph-based method for the fusion of spectral, spatial, and elevation information.
first_indexed 2024-12-24T11:20:46Z
format Article
id doaj.art-5ccf940bc11d40a28f853a57338c5d2d
institution Directory Open Access Journal
issn 2151-1535
language English
last_indexed 2024-12-24T11:20:46Z
publishDate 2014-01-01
publisher IEEE
record_format Article
series IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
spelling doaj.art-5ccf940bc11d40a28f853a57338c5d2d2022-12-21T16:58:14ZengIEEEIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing2151-15352014-01-01762405241810.1109/JSTARS.2014.23054416776408Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion ContestChristian Debes0Andreas Merentitis1Roel Heremans2Jurgen Hahn3Nikolaos Frangiadakis4Tim van Kasteren5Wenzhi Liao6Rik Bellens7Aleksandra Pizurica8Sidharta Gautama9Wilfried Philips10Saurabh Prasad11Qian Du12Fabio Pacifici13AGT International, Darmstadt, GermanyAGT International, Darmstadt, GermanyAGT International, Darmstadt, GermanyTechnische Universität Darmstadt, Darmstadt, GermanyAGT International, Darmstadt, GermanyAGT International, Darmstadt, GermanyGhent University-iMinds, Ghent, BelgiumGhent University-iMinds, Ghent, BelgiumGhent University-iMinds, Ghent, BelgiumGhent University-iMinds, Ghent, BelgiumGhent University-iMinds, Ghent, BelgiumUniversity of Houston, Houston, TX, USAMississippi State University, Mississipi State, MS, USADigitalGlobe Inc., Longmont, CO, USAThe 2013 Data Fusion Contest organized by the Data Fusion Technical Committee (DFTC) of the IEEE Geoscience and Remote Sensing Society aimed at investigating the synergistic use of hyperspectral and Light Detection And Ranging (LiDAR) data. The data sets distributed to the participants during the Contest, a hyperspectral imagery and the corresponding LiDAR-derived digital surface model (DSM), were acquired by the NSF-funded Center for Airborne Laser Mapping over the University of Houston campus and its neighboring area in the summer of 2012. This paper highlights the two awarded research contributions, which investigated different approaches for the fusion of hyperspectral and LiDAR data, including a combined unsupervised and supervised classification scheme, and a graph-based method for the fusion of spectral, spatial, and elevation information.https://ieeexplore.ieee.org/document/6776408/Data fusionhyperspectralLight Detection And Ranging (LiDAR)multi-modalurbanVHR imagery
spellingShingle Christian Debes
Andreas Merentitis
Roel Heremans
Jurgen Hahn
Nikolaos Frangiadakis
Tim van Kasteren
Wenzhi Liao
Rik Bellens
Aleksandra Pizurica
Sidharta Gautama
Wilfried Philips
Saurabh Prasad
Qian Du
Fabio Pacifici
Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Data fusion
hyperspectral
Light Detection And Ranging (LiDAR)
multi-modal
urban
VHR imagery
title Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest
title_full Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest
title_fullStr Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest
title_full_unstemmed Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest
title_short Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest
title_sort hyperspectral and lidar data fusion outcome of the 2013 grss data fusion contest
topic Data fusion
hyperspectral
Light Detection And Ranging (LiDAR)
multi-modal
urban
VHR imagery
url https://ieeexplore.ieee.org/document/6776408/
work_keys_str_mv AT christiandebes hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT andreasmerentitis hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT roelheremans hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT jurgenhahn hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT nikolaosfrangiadakis hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT timvankasteren hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT wenzhiliao hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT rikbellens hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT aleksandrapizurica hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT sidhartagautama hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT wilfriedphilips hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT saurabhprasad hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT qiandu hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest
AT fabiopacifici hyperspectralandlidardatafusionoutcomeofthe2013grssdatafusioncontest