Nonlinear elliptic systems
In this paper we treat the question of the existence of solutions of boundary value problems for systems of nonlinear elliptic equations of the form - deltau = f (x, u, v,<FONT FACE="Symbol">Ñ</FONT>u,<FONT FACE="Symbol">Ñ</FONT>v), - deltav = g(x, u, v, &...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Academia Brasileira de Ciências
2000-12-01
|
Series: | Anais da Academia Brasileira de Ciências |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652000000400002 |
_version_ | 1818579292632645632 |
---|---|
author | DJAIRO G. DEFIGUEIREDO |
author_facet | DJAIRO G. DEFIGUEIREDO |
author_sort | DJAIRO G. DEFIGUEIREDO |
collection | DOAJ |
description | In this paper we treat the question of the existence of solutions of boundary value problems for systems of nonlinear elliptic equations of the form - deltau = f (x, u, v,<FONT FACE="Symbol">Ñ</FONT>u,<FONT FACE="Symbol">Ñ</FONT>v), - deltav = g(x, u, v, <FONT FACE="Symbol">Ñ</FONT>u, <FONT FACE="Symbol">Ñ</FONT>v), in omega, We discuss several classes of such systems using both variational and topological methods. The notion of criticality takes into consideration the coupling, which plays important roles in both a priori estimates for the solutions and Palais-Smale conditions for the associated functional in the variational case. |
first_indexed | 2024-12-16T06:59:23Z |
format | Article |
id | doaj.art-5ce987b7046d44f29a35238252b1b495 |
institution | Directory Open Access Journal |
issn | 0001-3765 1678-2690 |
language | English |
last_indexed | 2024-12-16T06:59:23Z |
publishDate | 2000-12-01 |
publisher | Academia Brasileira de Ciências |
record_format | Article |
series | Anais da Academia Brasileira de Ciências |
spelling | doaj.art-5ce987b7046d44f29a35238252b1b4952022-12-21T22:40:12ZengAcademia Brasileira de CiênciasAnais da Academia Brasileira de Ciências0001-37651678-26902000-12-0172445346910.1590/S0001-37652000000400002Nonlinear elliptic systemsDJAIRO G. DEFIGUEIREDOIn this paper we treat the question of the existence of solutions of boundary value problems for systems of nonlinear elliptic equations of the form - deltau = f (x, u, v,<FONT FACE="Symbol">Ñ</FONT>u,<FONT FACE="Symbol">Ñ</FONT>v), - deltav = g(x, u, v, <FONT FACE="Symbol">Ñ</FONT>u, <FONT FACE="Symbol">Ñ</FONT>v), in omega, We discuss several classes of such systems using both variational and topological methods. The notion of criticality takes into consideration the coupling, which plays important roles in both a priori estimates for the solutions and Palais-Smale conditions for the associated functional in the variational case.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652000000400002elliptic equationsvariational methodspalais-smale conditionsleray-schauder degreea priori bounds |
spellingShingle | DJAIRO G. DEFIGUEIREDO Nonlinear elliptic systems Anais da Academia Brasileira de Ciências elliptic equations variational methods palais-smale conditions leray-schauder degree a priori bounds |
title | Nonlinear elliptic systems |
title_full | Nonlinear elliptic systems |
title_fullStr | Nonlinear elliptic systems |
title_full_unstemmed | Nonlinear elliptic systems |
title_short | Nonlinear elliptic systems |
title_sort | nonlinear elliptic systems |
topic | elliptic equations variational methods palais-smale conditions leray-schauder degree a priori bounds |
url | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652000000400002 |
work_keys_str_mv | AT djairogdefigueiredo nonlinearellipticsystems |