Nonlinear elliptic systems

In this paper we treat the question of the existence of solutions of boundary value problems for systems of nonlinear elliptic equations of the form - deltau = f (x, u, v,<FONT FACE="Symbol">Ñ</FONT>u,<FONT FACE="Symbol">Ñ</FONT>v), - deltav = g(x, u, v, &...

Full description

Bibliographic Details
Main Author: DJAIRO G. DEFIGUEIREDO
Format: Article
Language:English
Published: Academia Brasileira de Ciências 2000-12-01
Series:Anais da Academia Brasileira de Ciências
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652000000400002
_version_ 1818579292632645632
author DJAIRO G. DEFIGUEIREDO
author_facet DJAIRO G. DEFIGUEIREDO
author_sort DJAIRO G. DEFIGUEIREDO
collection DOAJ
description In this paper we treat the question of the existence of solutions of boundary value problems for systems of nonlinear elliptic equations of the form - deltau = f (x, u, v,<FONT FACE="Symbol">Ñ</FONT>u,<FONT FACE="Symbol">Ñ</FONT>v), - deltav = g(x, u, v, <FONT FACE="Symbol">Ñ</FONT>u, <FONT FACE="Symbol">Ñ</FONT>v), in omega, We discuss several classes of such systems using both variational and topological methods. The notion of criticality takes into consideration the coupling, which plays important roles in both a priori estimates for the solutions and Palais-Smale conditions for the associated functional in the variational case.
first_indexed 2024-12-16T06:59:23Z
format Article
id doaj.art-5ce987b7046d44f29a35238252b1b495
institution Directory Open Access Journal
issn 0001-3765
1678-2690
language English
last_indexed 2024-12-16T06:59:23Z
publishDate 2000-12-01
publisher Academia Brasileira de Ciências
record_format Article
series Anais da Academia Brasileira de Ciências
spelling doaj.art-5ce987b7046d44f29a35238252b1b4952022-12-21T22:40:12ZengAcademia Brasileira de CiênciasAnais da Academia Brasileira de Ciências0001-37651678-26902000-12-0172445346910.1590/S0001-37652000000400002Nonlinear elliptic systemsDJAIRO G. DEFIGUEIREDOIn this paper we treat the question of the existence of solutions of boundary value problems for systems of nonlinear elliptic equations of the form - deltau = f (x, u, v,<FONT FACE="Symbol">Ñ</FONT>u,<FONT FACE="Symbol">Ñ</FONT>v), - deltav = g(x, u, v, <FONT FACE="Symbol">Ñ</FONT>u, <FONT FACE="Symbol">Ñ</FONT>v), in omega, We discuss several classes of such systems using both variational and topological methods. The notion of criticality takes into consideration the coupling, which plays important roles in both a priori estimates for the solutions and Palais-Smale conditions for the associated functional in the variational case.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652000000400002elliptic equationsvariational methodspalais-smale conditionsleray-schauder degreea priori bounds
spellingShingle DJAIRO G. DEFIGUEIREDO
Nonlinear elliptic systems
Anais da Academia Brasileira de Ciências
elliptic equations
variational methods
palais-smale conditions
leray-schauder degree
a priori bounds
title Nonlinear elliptic systems
title_full Nonlinear elliptic systems
title_fullStr Nonlinear elliptic systems
title_full_unstemmed Nonlinear elliptic systems
title_short Nonlinear elliptic systems
title_sort nonlinear elliptic systems
topic elliptic equations
variational methods
palais-smale conditions
leray-schauder degree
a priori bounds
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652000000400002
work_keys_str_mv AT djairogdefigueiredo nonlinearellipticsystems