Comparison between Density and Velocity Fields in Burst Modulation of a Dielectric-Barrier-Discharge Plasma Actuator

The flow field produced by a dielectric-barrier-discharge plasma actuator using burst modulation was experimentally investigated in quiescent air from two viewpoints: density and vorticity fields. A wide range of burst signal parameters were evaluated using particle-image velocimetry and background-...

Full description

Bibliographic Details
Main Authors: Kenta Emori, Yutaka Kaneko, Hiroyuki Nishida
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Actuators
Subjects:
Online Access:https://www.mdpi.com/2076-0825/11/11/340
Description
Summary:The flow field produced by a dielectric-barrier-discharge plasma actuator using burst modulation was experimentally investigated in quiescent air from two viewpoints: density and vorticity fields. A wide range of burst signal parameters were evaluated using particle-image velocimetry and background-oriented schlieren measurements. Four types of flow-field patterns were found: Type 1 was a wall jet, similar to continuous operation; Type 2 was a periodical, independent vortex moving along the wall surface; Types 3 and 4 demonstrated a feature wherein the periodic shedding of the vortex pair (primary and secondary vortices) occurred while moving over the surface. While Types 3 and 4 demonstrated a shared feature, they had different density and vorticity structures. The change of the flow-field pattern from Type 1 to Type 4 was triggered by a lower burst frequency and ratio, as well as a higher base frequency. In addition, the vorticity strength and density were strongly negatively correlated and depended on the rate of power consumption to generate one vortex.
ISSN:2076-0825