Research on the Short-Term Economic Dispatch Method of Power System Involving a Hydropower-Photovoltaic-Pumped Storage Plant

The auxiliary regulation capacity of pumped-storage power stations can be utilized as an effective method to regulate the output of a hydro-photovoltaic complementary system, further mitigating the power fluctuations of the system and enhancing the photovoltaic absorption. This study aims to minimiz...

Full description

Bibliographic Details
Main Authors: Liang Guo, Shudi Liu, Litang Xi, Guofang Zhang, Ziqi Liu, Qi Zeng, Feipeng Lü, Yuhong Wang
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/13/7/1282
Description
Summary:The auxiliary regulation capacity of pumped-storage power stations can be utilized as an effective method to regulate the output of a hydro-photovoltaic complementary system, further mitigating the power fluctuations of the system and enhancing the photovoltaic absorption. This study aims to minimize power fluctuations and maximize the economic benefits of electricity generation in a hydropower-photovoltaic-pumped-storage complementary system (HPPCS), which are treated as the objective functions. It explores the participation of the HPPCS in grid active power balance auxiliary services. By modulating the participation ratio of the HPPCS in the grid’s active balance service, the system output is aligned to fluctuate proportionally with the daily load curve trend. Consequently, a short-term economic dispatch model for the integrated HPPCS is developed. The case study focuses on the considerable impact of weather conditions on photovoltaic (PV) power generation. In this model, the outputs of cascading hydro-power stations and pumped-storage power stations are considered as the decision variables. A decomposition-based multi-objective evolutionary algorithm is applied to derive an optimized intra-day dispatch Pareto solution set for the cascading HPPCS in each of these scenarios. Additionally, this study compares the Pareto solution sets for the HPPCS in various extents of its participation in grid auxiliary services. The results of the case study suggest that the system is capable of timely adjustments during the peak and trough periods of load demand. Considering the economic benefits, it enables the pumped-storage station to generate electricity for the grid during periods of high electricity prices and to store energy by pumping water when prices are low.
ISSN:2079-9292