Jointly power allocation and phase shift optimization for RIS empowered downlink cellular networks
Reconfigurable Intelligent Surfaces (RIS) have been highlighted by the research community as a key enabling technology for the enhancement of next-generation wireless network performance, including energy efficiency, spectral efficiency, and network throughput. This paper investigates how RIS-assis...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
European Alliance for Innovation (EAI)
2023-12-01
|
Series: | EAI Endorsed Transactions on Industrial Networks and Intelligent Systems |
Subjects: | |
Online Access: | https://publications.eai.eu/index.php/inis/article/view/4359 |
_version_ | 1827588086348906496 |
---|---|
author | Phuc Quang Truong Tan Do-Duy Van-Ca Phan Antonino Masaracchia |
author_facet | Phuc Quang Truong Tan Do-Duy Van-Ca Phan Antonino Masaracchia |
author_sort | Phuc Quang Truong |
collection | DOAJ |
description |
Reconfigurable Intelligent Surfaces (RIS) have been highlighted by the research community as a key enabling technology for the enhancement of next-generation wireless network performance, including energy efficiency, spectral efficiency, and network throughput. This paper investigates how RIS-assisted communication can effectively maximize the downlink throughput of a cellular network. Specifically, the paper considers a communication scenario where a single base station serves multiple ground users with the aid of an RIS placed on a building facade. For such a communication scenario, we considered an optimization problem aimed at maximizing the overall downlink throughput by jointly optimizing power allocation at the base station and phase shift of RIS reflecting elements, subject to power consumption and quality-of-service constraints. To address its non-convex nature, the original optimization problem has been divided into two subproblems. The first one, for power control with fixed phase shift values, is a convex problem that can be easily solved. Subsequently, a phase shift searching procedure to solve the non-convex problem of RIS phase shift optimization has been adopted. The results from numerical simulations show that the proposed method outperforms other conventional methods proposed in the literature. In addition, computational complexity analysis has been conducted to prove the low complexity of the proposed method.
|
first_indexed | 2024-03-09T00:28:18Z |
format | Article |
id | doaj.art-5cfda041bc1545e0a0a0f8dd30362b18 |
institution | Directory Open Access Journal |
issn | 2410-0218 |
language | English |
last_indexed | 2024-03-09T00:28:18Z |
publishDate | 2023-12-01 |
publisher | European Alliance for Innovation (EAI) |
record_format | Article |
series | EAI Endorsed Transactions on Industrial Networks and Intelligent Systems |
spelling | doaj.art-5cfda041bc1545e0a0a0f8dd30362b182023-12-11T18:43:26ZengEuropean Alliance for Innovation (EAI)EAI Endorsed Transactions on Industrial Networks and Intelligent Systems2410-02182023-12-0110410.4108/eetinis.v10i4.4359Jointly power allocation and phase shift optimization for RIS empowered downlink cellular networksPhuc Quang Truong0Tan Do-Duy1Van-Ca Phan2Antonino Masaracchia3Ho Chi Minh City University of Technology Ho Chi Minh City University of Technology Ho Chi Minh City University of Technology Queen's University Belfast Reconfigurable Intelligent Surfaces (RIS) have been highlighted by the research community as a key enabling technology for the enhancement of next-generation wireless network performance, including energy efficiency, spectral efficiency, and network throughput. This paper investigates how RIS-assisted communication can effectively maximize the downlink throughput of a cellular network. Specifically, the paper considers a communication scenario where a single base station serves multiple ground users with the aid of an RIS placed on a building facade. For such a communication scenario, we considered an optimization problem aimed at maximizing the overall downlink throughput by jointly optimizing power allocation at the base station and phase shift of RIS reflecting elements, subject to power consumption and quality-of-service constraints. To address its non-convex nature, the original optimization problem has been divided into two subproblems. The first one, for power control with fixed phase shift values, is a convex problem that can be easily solved. Subsequently, a phase shift searching procedure to solve the non-convex problem of RIS phase shift optimization has been adopted. The results from numerical simulations show that the proposed method outperforms other conventional methods proposed in the literature. In addition, computational complexity analysis has been conducted to prove the low complexity of the proposed method. https://publications.eai.eu/index.php/inis/article/view/43596GOptimizationPhase-Shaft OptimizationQoSResource AllocationRIS |
spellingShingle | Phuc Quang Truong Tan Do-Duy Van-Ca Phan Antonino Masaracchia Jointly power allocation and phase shift optimization for RIS empowered downlink cellular networks EAI Endorsed Transactions on Industrial Networks and Intelligent Systems 6G Optimization Phase-Shaft Optimization QoS Resource Allocation RIS |
title | Jointly power allocation and phase shift optimization for RIS empowered downlink cellular networks |
title_full | Jointly power allocation and phase shift optimization for RIS empowered downlink cellular networks |
title_fullStr | Jointly power allocation and phase shift optimization for RIS empowered downlink cellular networks |
title_full_unstemmed | Jointly power allocation and phase shift optimization for RIS empowered downlink cellular networks |
title_short | Jointly power allocation and phase shift optimization for RIS empowered downlink cellular networks |
title_sort | jointly power allocation and phase shift optimization for ris empowered downlink cellular networks |
topic | 6G Optimization Phase-Shaft Optimization QoS Resource Allocation RIS |
url | https://publications.eai.eu/index.php/inis/article/view/4359 |
work_keys_str_mv | AT phucquangtruong jointlypowerallocationandphaseshiftoptimizationforrisempowereddownlinkcellularnetworks AT tandoduy jointlypowerallocationandphaseshiftoptimizationforrisempowereddownlinkcellularnetworks AT vancaphan jointlypowerallocationandphaseshiftoptimizationforrisempowereddownlinkcellularnetworks AT antoninomasaracchia jointlypowerallocationandphaseshiftoptimizationforrisempowereddownlinkcellularnetworks |