Optical Fiber Sensors for High-Temperature Monitoring: A Review

High-temperature measurements above 1000 °C are critical in harsh environments such as aerospace, metallurgy, fossil fuel, and power production. Fiber-optic high-temperature sensors are gradually replacing traditional electronic sensors due to their small size, resistance to electromagnetic interfer...

Full description

Bibliographic Details
Main Authors: Shaonian Ma, Yanping Xu, Yuxi Pang, Xian Zhao, Yongfu Li, Zengguang Qin, Zhaojun Liu, Ping Lu, Xiaoyi Bao
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/15/5722
Description
Summary:High-temperature measurements above 1000 °C are critical in harsh environments such as aerospace, metallurgy, fossil fuel, and power production. Fiber-optic high-temperature sensors are gradually replacing traditional electronic sensors due to their small size, resistance to electromagnetic interference, remote detection, multiplexing, and distributed measurement advantages. This paper reviews the sensing principle, structural design, and temperature measurement performance of fiber-optic high-temperature sensors, as well as recent significant progress in the transition of sensing solutions from glass to crystal fiber. Finally, future prospects and challenges in developing fiber-optic high-temperature sensors are also discussed.
ISSN:1424-8220