The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans

Purpose: The purpose of this study was to evaluate the effect of pre-exercise alkalosis, induced via ingestion of sodium bicarbonate, on changes to lactate/pH regulatory proteins and mitochondrial function induced by a sprint-interval exercise session in humans.Methods: On two occasions separated by...

Full description

Bibliographic Details
Main Authors: Claire Thomas, Rémi Delfour‐Peyrethon, Karen Lambert, Cesare Granata, Thomas Hobbs, Christine Hanon, David J. Bishop
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-01-01
Series:Frontiers in Physiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphys.2023.1073407/full
_version_ 1828053031792410624
author Claire Thomas
Claire Thomas
Rémi Delfour‐Peyrethon
Rémi Delfour‐Peyrethon
Karen Lambert
Cesare Granata
Cesare Granata
Cesare Granata
Cesare Granata
Thomas Hobbs
Christine Hanon
Christine Hanon
David J. Bishop
author_facet Claire Thomas
Claire Thomas
Rémi Delfour‐Peyrethon
Rémi Delfour‐Peyrethon
Karen Lambert
Cesare Granata
Cesare Granata
Cesare Granata
Cesare Granata
Thomas Hobbs
Christine Hanon
Christine Hanon
David J. Bishop
author_sort Claire Thomas
collection DOAJ
description Purpose: The purpose of this study was to evaluate the effect of pre-exercise alkalosis, induced via ingestion of sodium bicarbonate, on changes to lactate/pH regulatory proteins and mitochondrial function induced by a sprint-interval exercise session in humans.Methods: On two occasions separated by 1 week, eight active men performed a 3 × 30-s all-out cycling test, interspersed with 20 min of recovery, following either placebo (PLA) or sodium bicarbonate (BIC) ingestion.Results: Blood bicarbonate and pH were elevated at all time points after ingestion in BIC vs PLA (p < 0.05). The protein content of monocarboxylate transporter 1 (MCT1) and basigin (CD147), at 6 h and 24 h post-exercise, and sodium/hydrogen exchanger 1 (NHE1) 24 h post-exercise, were significantly greater in BIC compared to PLA (p < 0.05), whereas monocarboxylate transporter 4 (MCT4), sodium/bicarbonate cotransporter (NBC), and carbonic anhydrase isoform II (CAII) content was unchanged. These increases in protein content in BIC vs. PLA after acute sprint-interval exercise may be associated with altered physiological responses to exercise, such as the higher blood pH and bicarbonate concentration values, and lower exercise-induced oxidative stress observed during recovery (p < 0.05). Additionally, mitochondrial respiration decreased after 24 h of recovery in the BIC condition only, with no changes in oxidative protein content in either condition.Conclusion: These data demonstrate that metabolic alkalosis induces post-exercise increases in several lactate/pH regulatory proteins, and reveal an unexpected role for acidosis in mitigating the loss of mitochondrial respiration caused by exercise in the short term.
first_indexed 2024-04-10T20:01:23Z
format Article
id doaj.art-5d010090b17c45558825e735670407ad
institution Directory Open Access Journal
issn 1664-042X
language English
last_indexed 2024-04-10T20:01:23Z
publishDate 2023-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Physiology
spelling doaj.art-5d010090b17c45558825e735670407ad2023-01-27T05:22:45ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2023-01-011410.3389/fphys.2023.10734071073407The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humansClaire Thomas0Claire Thomas1Rémi Delfour‐Peyrethon2Rémi Delfour‐Peyrethon3Karen Lambert4Cesare Granata5Cesare Granata6Cesare Granata7Cesare Granata8Thomas Hobbs9Christine Hanon10Christine Hanon11David J. Bishop12LBEPS, Univ Evry, IRBA, University Paris Saclay, Evry, FranceFrench Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, FranceFrench Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, FranceInstitute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, AustraliaPhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, FranceFrench Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, FranceDepartment of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, AustraliaInstitute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, GermanyLBEPS, Univ Evry, IRBA, University Paris Saclay, Evry, FranceFrench Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, FranceFrench Athletics Federation, Paris, FranceInstitute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, AustraliaPurpose: The purpose of this study was to evaluate the effect of pre-exercise alkalosis, induced via ingestion of sodium bicarbonate, on changes to lactate/pH regulatory proteins and mitochondrial function induced by a sprint-interval exercise session in humans.Methods: On two occasions separated by 1 week, eight active men performed a 3 × 30-s all-out cycling test, interspersed with 20 min of recovery, following either placebo (PLA) or sodium bicarbonate (BIC) ingestion.Results: Blood bicarbonate and pH were elevated at all time points after ingestion in BIC vs PLA (p < 0.05). The protein content of monocarboxylate transporter 1 (MCT1) and basigin (CD147), at 6 h and 24 h post-exercise, and sodium/hydrogen exchanger 1 (NHE1) 24 h post-exercise, were significantly greater in BIC compared to PLA (p < 0.05), whereas monocarboxylate transporter 4 (MCT4), sodium/bicarbonate cotransporter (NBC), and carbonic anhydrase isoform II (CAII) content was unchanged. These increases in protein content in BIC vs. PLA after acute sprint-interval exercise may be associated with altered physiological responses to exercise, such as the higher blood pH and bicarbonate concentration values, and lower exercise-induced oxidative stress observed during recovery (p < 0.05). Additionally, mitochondrial respiration decreased after 24 h of recovery in the BIC condition only, with no changes in oxidative protein content in either condition.Conclusion: These data demonstrate that metabolic alkalosis induces post-exercise increases in several lactate/pH regulatory proteins, and reveal an unexpected role for acidosis in mitigating the loss of mitochondrial respiration caused by exercise in the short term.https://www.frontiersin.org/articles/10.3389/fphys.2023.1073407/fulllactatesodium bicarbonatemct1metabolic acidosislactate transportmitochondrial function
spellingShingle Claire Thomas
Claire Thomas
Rémi Delfour‐Peyrethon
Rémi Delfour‐Peyrethon
Karen Lambert
Cesare Granata
Cesare Granata
Cesare Granata
Cesare Granata
Thomas Hobbs
Christine Hanon
Christine Hanon
David J. Bishop
The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans
Frontiers in Physiology
lactate
sodium bicarbonate
mct1
metabolic acidosis
lactate transport
mitochondrial function
title The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans
title_full The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans
title_fullStr The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans
title_full_unstemmed The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans
title_short The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans
title_sort effect of pre exercise alkalosis on lactate ph regulation and mitochondrial respiration following sprint interval exercise in humans
topic lactate
sodium bicarbonate
mct1
metabolic acidosis
lactate transport
mitochondrial function
url https://www.frontiersin.org/articles/10.3389/fphys.2023.1073407/full
work_keys_str_mv AT clairethomas theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT clairethomas theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT remidelfourpeyrethon theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT remidelfourpeyrethon theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT karenlambert theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT cesaregranata theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT cesaregranata theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT cesaregranata theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT cesaregranata theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT thomashobbs theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT christinehanon theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT christinehanon theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT davidjbishop theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT clairethomas effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT clairethomas effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT remidelfourpeyrethon effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT remidelfourpeyrethon effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT karenlambert effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT cesaregranata effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT cesaregranata effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT cesaregranata effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT cesaregranata effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT thomashobbs effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT christinehanon effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT christinehanon effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans
AT davidjbishop effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans