The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans
Purpose: The purpose of this study was to evaluate the effect of pre-exercise alkalosis, induced via ingestion of sodium bicarbonate, on changes to lactate/pH regulatory proteins and mitochondrial function induced by a sprint-interval exercise session in humans.Methods: On two occasions separated by...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-01-01
|
Series: | Frontiers in Physiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fphys.2023.1073407/full |
_version_ | 1828053031792410624 |
---|---|
author | Claire Thomas Claire Thomas Rémi Delfour‐Peyrethon Rémi Delfour‐Peyrethon Karen Lambert Cesare Granata Cesare Granata Cesare Granata Cesare Granata Thomas Hobbs Christine Hanon Christine Hanon David J. Bishop |
author_facet | Claire Thomas Claire Thomas Rémi Delfour‐Peyrethon Rémi Delfour‐Peyrethon Karen Lambert Cesare Granata Cesare Granata Cesare Granata Cesare Granata Thomas Hobbs Christine Hanon Christine Hanon David J. Bishop |
author_sort | Claire Thomas |
collection | DOAJ |
description | Purpose: The purpose of this study was to evaluate the effect of pre-exercise alkalosis, induced via ingestion of sodium bicarbonate, on changes to lactate/pH regulatory proteins and mitochondrial function induced by a sprint-interval exercise session in humans.Methods: On two occasions separated by 1 week, eight active men performed a 3 × 30-s all-out cycling test, interspersed with 20 min of recovery, following either placebo (PLA) or sodium bicarbonate (BIC) ingestion.Results: Blood bicarbonate and pH were elevated at all time points after ingestion in BIC vs PLA (p < 0.05). The protein content of monocarboxylate transporter 1 (MCT1) and basigin (CD147), at 6 h and 24 h post-exercise, and sodium/hydrogen exchanger 1 (NHE1) 24 h post-exercise, were significantly greater in BIC compared to PLA (p < 0.05), whereas monocarboxylate transporter 4 (MCT4), sodium/bicarbonate cotransporter (NBC), and carbonic anhydrase isoform II (CAII) content was unchanged. These increases in protein content in BIC vs. PLA after acute sprint-interval exercise may be associated with altered physiological responses to exercise, such as the higher blood pH and bicarbonate concentration values, and lower exercise-induced oxidative stress observed during recovery (p < 0.05). Additionally, mitochondrial respiration decreased after 24 h of recovery in the BIC condition only, with no changes in oxidative protein content in either condition.Conclusion: These data demonstrate that metabolic alkalosis induces post-exercise increases in several lactate/pH regulatory proteins, and reveal an unexpected role for acidosis in mitigating the loss of mitochondrial respiration caused by exercise in the short term. |
first_indexed | 2024-04-10T20:01:23Z |
format | Article |
id | doaj.art-5d010090b17c45558825e735670407ad |
institution | Directory Open Access Journal |
issn | 1664-042X |
language | English |
last_indexed | 2024-04-10T20:01:23Z |
publishDate | 2023-01-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Physiology |
spelling | doaj.art-5d010090b17c45558825e735670407ad2023-01-27T05:22:45ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2023-01-011410.3389/fphys.2023.10734071073407The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humansClaire Thomas0Claire Thomas1Rémi Delfour‐Peyrethon2Rémi Delfour‐Peyrethon3Karen Lambert4Cesare Granata5Cesare Granata6Cesare Granata7Cesare Granata8Thomas Hobbs9Christine Hanon10Christine Hanon11David J. Bishop12LBEPS, Univ Evry, IRBA, University Paris Saclay, Evry, FranceFrench Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, FranceFrench Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, FranceInstitute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, AustraliaPhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, FranceFrench Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, FranceDepartment of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, AustraliaInstitute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, GermanyGerman Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, GermanyLBEPS, Univ Evry, IRBA, University Paris Saclay, Evry, FranceFrench Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, FranceFrench Athletics Federation, Paris, FranceInstitute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, AustraliaPurpose: The purpose of this study was to evaluate the effect of pre-exercise alkalosis, induced via ingestion of sodium bicarbonate, on changes to lactate/pH regulatory proteins and mitochondrial function induced by a sprint-interval exercise session in humans.Methods: On two occasions separated by 1 week, eight active men performed a 3 × 30-s all-out cycling test, interspersed with 20 min of recovery, following either placebo (PLA) or sodium bicarbonate (BIC) ingestion.Results: Blood bicarbonate and pH were elevated at all time points after ingestion in BIC vs PLA (p < 0.05). The protein content of monocarboxylate transporter 1 (MCT1) and basigin (CD147), at 6 h and 24 h post-exercise, and sodium/hydrogen exchanger 1 (NHE1) 24 h post-exercise, were significantly greater in BIC compared to PLA (p < 0.05), whereas monocarboxylate transporter 4 (MCT4), sodium/bicarbonate cotransporter (NBC), and carbonic anhydrase isoform II (CAII) content was unchanged. These increases in protein content in BIC vs. PLA after acute sprint-interval exercise may be associated with altered physiological responses to exercise, such as the higher blood pH and bicarbonate concentration values, and lower exercise-induced oxidative stress observed during recovery (p < 0.05). Additionally, mitochondrial respiration decreased after 24 h of recovery in the BIC condition only, with no changes in oxidative protein content in either condition.Conclusion: These data demonstrate that metabolic alkalosis induces post-exercise increases in several lactate/pH regulatory proteins, and reveal an unexpected role for acidosis in mitigating the loss of mitochondrial respiration caused by exercise in the short term.https://www.frontiersin.org/articles/10.3389/fphys.2023.1073407/fulllactatesodium bicarbonatemct1metabolic acidosislactate transportmitochondrial function |
spellingShingle | Claire Thomas Claire Thomas Rémi Delfour‐Peyrethon Rémi Delfour‐Peyrethon Karen Lambert Cesare Granata Cesare Granata Cesare Granata Cesare Granata Thomas Hobbs Christine Hanon Christine Hanon David J. Bishop The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans Frontiers in Physiology lactate sodium bicarbonate mct1 metabolic acidosis lactate transport mitochondrial function |
title | The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans |
title_full | The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans |
title_fullStr | The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans |
title_full_unstemmed | The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans |
title_short | The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans |
title_sort | effect of pre exercise alkalosis on lactate ph regulation and mitochondrial respiration following sprint interval exercise in humans |
topic | lactate sodium bicarbonate mct1 metabolic acidosis lactate transport mitochondrial function |
url | https://www.frontiersin.org/articles/10.3389/fphys.2023.1073407/full |
work_keys_str_mv | AT clairethomas theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT clairethomas theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT remidelfourpeyrethon theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT remidelfourpeyrethon theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT karenlambert theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT cesaregranata theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT cesaregranata theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT cesaregranata theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT cesaregranata theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT thomashobbs theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT christinehanon theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT christinehanon theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT davidjbishop theeffectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT clairethomas effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT clairethomas effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT remidelfourpeyrethon effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT remidelfourpeyrethon effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT karenlambert effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT cesaregranata effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT cesaregranata effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT cesaregranata effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT cesaregranata effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT thomashobbs effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT christinehanon effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT christinehanon effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans AT davidjbishop effectofpreexercisealkalosisonlactatephregulationandmitochondrialrespirationfollowingsprintintervalexerciseinhumans |