A Case Study on the Application of the Steel Tube Slab Structure in Construction of a Subway Station

It is an effective approach to use Steel Tube Slab (STS) structure combined with the Pile-Beam-Arch (PBA) method to construct a large-space underground station. Traditional construction methods cannot meet the requirement of construction because of the complicated soil layers and high building densi...

Full description

Bibliographic Details
Main Authors: Peng-jiao Jia, Wen Zhao, Yang Chen, Shen-gang Li, Jian-yong Han, Jia-chao Dong
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/8/9/1437
Description
Summary:It is an effective approach to use Steel Tube Slab (STS) structure combined with the Pile-Beam-Arch (PBA) method to construct a large-space underground station. Traditional construction methods cannot meet the requirement of construction because of the complicated soil layers and high building densities in urban areas. The STS method can effectively increase the rigidity of the supporting system by using steel tubes. Firstly, the stress of bolts and steel tubes are investigated in the construction process based on the field monitoring data. Subsequently, FLAC3D is used to establish a three-dimensional model, which is verified based on the in-situ monitoring data; the effect of excavation process on ground settlement, deformation of STS structure and bridge pile are studied by numerical results. Moreover, the key parameters such as welding of flanges and the step length are studied. The results show that the stress of the steel tubes and flanges does not exceed the designed strength during the construction process. Based on the numerical simulation data, it is indicated that the STS structure can be a very effective and dependable measure in controlling and reducing the surface settlement and the existing adjacent buildings. The numerical results can be used to guide the later construction.
ISSN:2076-3417