Complete, Theoretical Rovibronic Spectral Characterization of the Carbon Monoxide, Water, and Formaldehyde Cations

New high-level ab initio quartic force field (QFF) methods are explored which provide spectroscopic data for the electronically excited states of the carbon monoxide, water, and formaldehyde cations, sentinel species for expanded, recent cometary spectral analysis. QFFs based on equation-of-motion i...

Full description

Bibliographic Details
Main Authors: Megan C. Davis, Xinchuan Huang, Ryan C. Fortenberry
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/4/1782
_version_ 1797619016414527488
author Megan C. Davis
Xinchuan Huang
Ryan C. Fortenberry
author_facet Megan C. Davis
Xinchuan Huang
Ryan C. Fortenberry
author_sort Megan C. Davis
collection DOAJ
description New high-level ab initio quartic force field (QFF) methods are explored which provide spectroscopic data for the electronically excited states of the carbon monoxide, water, and formaldehyde cations, sentinel species for expanded, recent cometary spectral analysis. QFFs based on equation-of-motion ionization potential (EOM-IP) with a complete basis set extrapolation and core correlation corrections provide assignment for the fundamental vibrational frequencies of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi mathvariant="normal">A</mi><mo>˜</mo></mover></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>B<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi mathvariant="normal">B</mi><mo>˜</mo></mover></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>A<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> states of the formaldehyde cation; only three of these frequencies have experimental assignment available. Rotational constants corresponding to these vibrational excitations are also provided for the first time for all electronically excited states of both of these molecules. EOM-IP-CCSDT/CcC computations support tentative re-assignment of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>3</mn></msub></semantics></math></inline-formula> frequencies of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi mathvariant="normal">B</mi><mo>˜</mo></mover></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mn>2</mn></msup><msub><mi>B</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> state of the water cation to approximately 2409.3 cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and 1785.7 cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, respectively, due to significant disagreement between experimental assignment and all levels of theory computed herein, as well as work by previous authors. The EOM-IP-CCSDT/CcC QFF achieves agreement to within 12 cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> for the fundamental vibrational frequencies of the electronic ground state of the water cation compared to experimental values and to the high-level theoretical benchmarks for variationally-accessible states. Less costly EOM-IP based approaches are also explored using approximate triples coupled cluster methods, as well as electronically excited state QFFs based on EOM-CC3 and the previous (T)+EOM approach. The novel data, including vibrationally corrected rotational constants for all states studied herein, provided by these computations should be useful in clarifying comet evolution or other remote sensing applications in addition to fundamental spectroscopy.
first_indexed 2024-03-11T08:20:59Z
format Article
id doaj.art-5d0c2a69032c45d8a9766d4dac391ff0
institution Directory Open Access Journal
issn 1420-3049
language English
last_indexed 2024-03-11T08:20:59Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj.art-5d0c2a69032c45d8a9766d4dac391ff02023-11-16T22:23:08ZengMDPI AGMolecules1420-30492023-02-01284178210.3390/molecules28041782Complete, Theoretical Rovibronic Spectral Characterization of the Carbon Monoxide, Water, and Formaldehyde CationsMegan C. Davis0Xinchuan Huang1Ryan C. Fortenberry2Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677-1848, USASETI Institute, Mountain View, CA 94043, USADepartment of Chemistry & Biochemistry, University of Mississippi, University, MS 38677-1848, USANew high-level ab initio quartic force field (QFF) methods are explored which provide spectroscopic data for the electronically excited states of the carbon monoxide, water, and formaldehyde cations, sentinel species for expanded, recent cometary spectral analysis. QFFs based on equation-of-motion ionization potential (EOM-IP) with a complete basis set extrapolation and core correlation corrections provide assignment for the fundamental vibrational frequencies of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi mathvariant="normal">A</mi><mo>˜</mo></mover></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>B<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi mathvariant="normal">B</mi><mo>˜</mo></mover></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>A<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> states of the formaldehyde cation; only three of these frequencies have experimental assignment available. Rotational constants corresponding to these vibrational excitations are also provided for the first time for all electronically excited states of both of these molecules. EOM-IP-CCSDT/CcC computations support tentative re-assignment of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ν</mi><mn>3</mn></msub></semantics></math></inline-formula> frequencies of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi mathvariant="normal">B</mi><mo>˜</mo></mover></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mn>2</mn></msup><msub><mi>B</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> state of the water cation to approximately 2409.3 cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and 1785.7 cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, respectively, due to significant disagreement between experimental assignment and all levels of theory computed herein, as well as work by previous authors. The EOM-IP-CCSDT/CcC QFF achieves agreement to within 12 cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> for the fundamental vibrational frequencies of the electronic ground state of the water cation compared to experimental values and to the high-level theoretical benchmarks for variationally-accessible states. Less costly EOM-IP based approaches are also explored using approximate triples coupled cluster methods, as well as electronically excited state QFFs based on EOM-CC3 and the previous (T)+EOM approach. The novel data, including vibrationally corrected rotational constants for all states studied herein, provided by these computations should be useful in clarifying comet evolution or other remote sensing applications in addition to fundamental spectroscopy.https://www.mdpi.com/1420-3049/28/4/1782quantum chemistrycomputational spectroscopycoupled cluster theoryastrochemistryUV/Vis spectrarovibronic spectra
spellingShingle Megan C. Davis
Xinchuan Huang
Ryan C. Fortenberry
Complete, Theoretical Rovibronic Spectral Characterization of the Carbon Monoxide, Water, and Formaldehyde Cations
Molecules
quantum chemistry
computational spectroscopy
coupled cluster theory
astrochemistry
UV/Vis spectra
rovibronic spectra
title Complete, Theoretical Rovibronic Spectral Characterization of the Carbon Monoxide, Water, and Formaldehyde Cations
title_full Complete, Theoretical Rovibronic Spectral Characterization of the Carbon Monoxide, Water, and Formaldehyde Cations
title_fullStr Complete, Theoretical Rovibronic Spectral Characterization of the Carbon Monoxide, Water, and Formaldehyde Cations
title_full_unstemmed Complete, Theoretical Rovibronic Spectral Characterization of the Carbon Monoxide, Water, and Formaldehyde Cations
title_short Complete, Theoretical Rovibronic Spectral Characterization of the Carbon Monoxide, Water, and Formaldehyde Cations
title_sort complete theoretical rovibronic spectral characterization of the carbon monoxide water and formaldehyde cations
topic quantum chemistry
computational spectroscopy
coupled cluster theory
astrochemistry
UV/Vis spectra
rovibronic spectra
url https://www.mdpi.com/1420-3049/28/4/1782
work_keys_str_mv AT megancdavis completetheoreticalrovibronicspectralcharacterizationofthecarbonmonoxidewaterandformaldehydecations
AT xinchuanhuang completetheoreticalrovibronicspectralcharacterizationofthecarbonmonoxidewaterandformaldehydecations
AT ryancfortenberry completetheoreticalrovibronicspectralcharacterizationofthecarbonmonoxidewaterandformaldehydecations