Note on $p_1$-Lindelof spaces which are not contra second countable spaces in bitopology

In this article we show that a contra second countable bitopological space is a $p_1$-Lindelof space, but the converse is not true in general. We provide suitable example with the help of concepts of nest and interlocking from LOTS. The relation between pairwise regular spaces and $p_1$-normal spac...

Full description

Bibliographic Details
Main Authors: Santanu Acharjee, Kyriakos Papadopoulos, Binod Chandra Tripathy
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2018-02-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/34701
Description
Summary:In this article we show that a contra second countable bitopological space is a $p_1$-Lindelof space, but the converse is not true in general. We provide suitable example with the help of concepts of nest and interlocking from LOTS. The relation between pairwise regular spaces and $p_1$-normal spaces is studied. At the end, we propose some open questions which may enrich various concepts related to Lindelofness in a bitopological space and other areas of mathematical ideas.
ISSN:0037-8712
2175-1188