Variational quantum amplitude estimation

We propose to perform amplitude estimation with the help of constant-depth quantum circuits that variationally approximate states during amplitude amplification. In the context of Monte Carlo (MC) integration, we numerically show that shallow circuits can accurately approximate many amplitude amplif...

Full description

Bibliographic Details
Main Authors: Kirill Plekhanov, Matthias Rosenkranz, Mattia Fiorentini, Michael Lubasch
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2022-03-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2022-03-17-670/pdf/
_version_ 1818312932229906432
author Kirill Plekhanov
Matthias Rosenkranz
Mattia Fiorentini
Michael Lubasch
author_facet Kirill Plekhanov
Matthias Rosenkranz
Mattia Fiorentini
Michael Lubasch
author_sort Kirill Plekhanov
collection DOAJ
description We propose to perform amplitude estimation with the help of constant-depth quantum circuits that variationally approximate states during amplitude amplification. In the context of Monte Carlo (MC) integration, we numerically show that shallow circuits can accurately approximate many amplitude amplification steps. We combine the variational approach with maximum likelihood amplitude estimation [Y. Suzuki et al., Quantum Inf. Process. 19, 75 (2020)] in variational quantum amplitude estimation (VQAE). VQAE typically has larger computational requirements than classical MC sampling. To reduce the variational cost, we propose adaptive VQAE and numerically show in 6 to 12 qubit simulations that it can outperform classical MC sampling.
first_indexed 2024-12-13T08:25:42Z
format Article
id doaj.art-5d2ed3193c6a4aef83d4866cbdd29828
institution Directory Open Access Journal
issn 2521-327X
language English
last_indexed 2024-12-13T08:25:42Z
publishDate 2022-03-01
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
record_format Article
series Quantum
spelling doaj.art-5d2ed3193c6a4aef83d4866cbdd298282022-12-21T23:53:54ZengVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenQuantum2521-327X2022-03-01667010.22331/q-2022-03-17-67010.22331/q-2022-03-17-670Variational quantum amplitude estimationKirill PlekhanovMatthias RosenkranzMattia FiorentiniMichael LubaschWe propose to perform amplitude estimation with the help of constant-depth quantum circuits that variationally approximate states during amplitude amplification. In the context of Monte Carlo (MC) integration, we numerically show that shallow circuits can accurately approximate many amplitude amplification steps. We combine the variational approach with maximum likelihood amplitude estimation [Y. Suzuki et al., Quantum Inf. Process. 19, 75 (2020)] in variational quantum amplitude estimation (VQAE). VQAE typically has larger computational requirements than classical MC sampling. To reduce the variational cost, we propose adaptive VQAE and numerically show in 6 to 12 qubit simulations that it can outperform classical MC sampling.https://quantum-journal.org/papers/q-2022-03-17-670/pdf/
spellingShingle Kirill Plekhanov
Matthias Rosenkranz
Mattia Fiorentini
Michael Lubasch
Variational quantum amplitude estimation
Quantum
title Variational quantum amplitude estimation
title_full Variational quantum amplitude estimation
title_fullStr Variational quantum amplitude estimation
title_full_unstemmed Variational quantum amplitude estimation
title_short Variational quantum amplitude estimation
title_sort variational quantum amplitude estimation
url https://quantum-journal.org/papers/q-2022-03-17-670/pdf/
work_keys_str_mv AT kirillplekhanov variationalquantumamplitudeestimation
AT matthiasrosenkranz variationalquantumamplitudeestimation
AT mattiafiorentini variationalquantumamplitudeestimation
AT michaellubasch variationalquantumamplitudeestimation