Evolution of Structure and Properties of Nickel-Enriched NiTi Shape Memory Alloy Subjected to Bi-Axial Deformation

The effect of a promising method of performing a thermomechanical treatment which provides the nanocrystalline structure formation in bulk NiTi shape memory alloy samples and a corresponding improvement to their properties was studied in the present work. The bi-axial severe plastic deformation of T...

Full description

Bibliographic Details
Main Authors: Victor Komarov, Roman Karelin, Irina Khmelevskaya, Vladimir Cherkasov, Vladimir Yusupov, Grzegorz Korpala, Rudolf Kawalla, Ulrich Prahl, Sergey Prokoshkin
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/2/511
Description
Summary:The effect of a promising method of performing a thermomechanical treatment which provides the nanocrystalline structure formation in bulk NiTi shape memory alloy samples and a corresponding improvement to their properties was studied in the present work. The bi-axial severe plastic deformation of Ti-50.7at.%Ni alloy was carried out on the MaxStrain module of the Gleeble system at 350 and 330 °C with accumulated true strains of <i>e</i> = 6.6–9.5. The obtained structure and its mechanical and functional properties and martensitic transformations were studied using DSC, X-ray diffractometry, and TEM. A nanocrystalline structure with a grain/subgrain size of below 80 nm was formed in bulk nickel-enriched NiTi alloy after the MaxStrain deformation at 330 °C with <i>e</i> = 9.5. The application of MaxStrain leads to the formation of a nanocrystalline structure that is characterized by the appearance of a nano-sized grains and subgrains with equiaxed and elongated shapes and a high free dislocation density. After the MaxStrain deformation at 330 °C with <i>e</i> = 9.5 was performed, the completely nanocrystalline structure with the grain/subgrain size of below 80 nm was formed in bulk nickel-enriched NiTi alloy for the first time. The resulting structure provides a total recoverable strain of 12%, which exceeds the highest values that have been reported for bulk nickel-enriched NiTi samples.
ISSN:1996-1944