Calculation model of killing probability of explosion shock wave based on ovepressure and impulse

Based on the characteristics of the explosion injuries on the human body, a calculation model for evaluating the casualty probability of people in the explosion power field is established, which is directed against the damage caused by the changes of overpressure and impulse during explosion. By com...

Full description

Bibliographic Details
Main Author: ZHANG Yi, LI Zhi-bin
Format: Article
Language:zho
Published: Editorial Office of Command Control and Simulation 2023-02-01
Series:Zhihui kongzhi yu fangzhen
Subjects:
Online Access:https://www.zhkzyfz.cn/fileup/1673-3819/PDF/1676862412458-1089378942.pdf
Description
Summary:Based on the characteristics of the explosion injuries on the human body, a calculation model for evaluating the casualty probability of people in the explosion power field is established, which is directed against the damage caused by the changes of overpressure and impulse during explosion. By combining with the characteristics of explosion injuries, the human injuries are classified, and the human impact injuries and throwing injuries caused by explosion are analyzed. In addition, the TNT equivalent and the overpressure and impulse changes in the explosion power field are calculated according to the relevant parameters of explosives. Subsequently, the PROBIT method is used to evaluate the probability of casualties. Based on this calculation model, the "3.21" special major explosion accident of Jiangsu Xiangshui Tianjiayi Chemical Co., Ltd. is analyzed. It's shown that the safety distance calculated by the model is consistent with the actual situation in the explosion accident. Besides, the killing probability of shock wave of a certain type of ammunition is evaluated, and the characteristics of four kinds of injuries are analyzed. Furthermore, the model can be used to calculate the probability of casualties caused by overpressure and impulse change during explosion quickly, and it has referential significances for evaluating casualties in explosion accidents and explosion injuries in the battlefield.
ISSN:1673-3819