Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics

Abstract Functional redundancy is a key ecosystem property representing the fact that different taxa contribute to an ecosystem in similar ways through the expression of redundant functions. The redundancy of potential functions (or genome-level functional redundancy $${{{{{{\rm{FR}}}}}}}_{g}$$ FR g...

Full description

Bibliographic Details
Main Authors: Leyuan Li, Tong Wang, Zhibin Ning, Xu Zhang, James Butcher, Joeselle M. Serrana, Caitlin M. A. Simopoulos, Janice Mayne, Alain Stintzi, David R. Mack, Yang-Yu Liu, Daniel Figeys
Format: Article
Language:English
Published: Nature Portfolio 2023-06-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-39149-2
_version_ 1797806572515098624
author Leyuan Li
Tong Wang
Zhibin Ning
Xu Zhang
James Butcher
Joeselle M. Serrana
Caitlin M. A. Simopoulos
Janice Mayne
Alain Stintzi
David R. Mack
Yang-Yu Liu
Daniel Figeys
author_facet Leyuan Li
Tong Wang
Zhibin Ning
Xu Zhang
James Butcher
Joeselle M. Serrana
Caitlin M. A. Simopoulos
Janice Mayne
Alain Stintzi
David R. Mack
Yang-Yu Liu
Daniel Figeys
author_sort Leyuan Li
collection DOAJ
description Abstract Functional redundancy is a key ecosystem property representing the fact that different taxa contribute to an ecosystem in similar ways through the expression of redundant functions. The redundancy of potential functions (or genome-level functional redundancy $${{{{{{\rm{FR}}}}}}}_{g}$$ FR g ) of human microbiomes has been recently quantified using metagenomics data. Yet, the redundancy of expressed functions in the human microbiome has never been quantitatively explored. Here, we present an approach to quantify the proteome-level functional redundancy $${{{{{{\rm{FR}}}}}}}_{p}$$ FR p in the human gut microbiome using metaproteomics. Ultra-deep metaproteomics reveals high proteome-level functional redundancy and high nestedness in the human gut proteomic content networks (i.e., the bipartite graphs connecting taxa to functions). We find that the nested topology of proteomic content networks and relatively small functional distances between proteomes of certain pairs of taxa together contribute to high $${{{{{{\rm{FR}}}}}}}_{p}$$ FR p in the human gut microbiome. As a metric comprehensively incorporating the factors of presence/absence of each function, protein abundances of each function and biomass of each taxon, $${{{{{{\rm{FR}}}}}}}_{p}$$ FR p outcompetes diversity indices in detecting significant microbiome responses to environmental factors, including individuality, biogeography, xenobiotics, and disease. We show that gut inflammation and exposure to specific xenobiotics can significantly diminish the $${{{{{{\rm{FR}}}}}}}_{p}$$ FR p with no significant change in taxonomic diversity.
first_indexed 2024-03-13T06:09:18Z
format Article
id doaj.art-5d3f124ec93b4a05b0683ec979cc01bb
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-13T06:09:18Z
publishDate 2023-06-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-5d3f124ec93b4a05b0683ec979cc01bb2023-06-11T11:19:44ZengNature PortfolioNature Communications2041-17232023-06-0114111410.1038/s41467-023-39149-2Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomicsLeyuan Li0Tong Wang1Zhibin Ning2Xu Zhang3James Butcher4Joeselle M. Serrana5Caitlin M. A. Simopoulos6Janice Mayne7Alain Stintzi8David R. Mack9Yang-Yu Liu10Daniel Figeys11State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsChanning Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolSchool of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of OttawaSchool of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of OttawaDepartment of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of OttawaSchool of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of OttawaSchool of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of OttawaSchool of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of OttawaDepartment of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of OttawaDepartment of Paediatrics, Faculty of Medicine, University of Ottawa and Children’s Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research InstituteChanning Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolSchool of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of OttawaAbstract Functional redundancy is a key ecosystem property representing the fact that different taxa contribute to an ecosystem in similar ways through the expression of redundant functions. The redundancy of potential functions (or genome-level functional redundancy $${{{{{{\rm{FR}}}}}}}_{g}$$ FR g ) of human microbiomes has been recently quantified using metagenomics data. Yet, the redundancy of expressed functions in the human microbiome has never been quantitatively explored. Here, we present an approach to quantify the proteome-level functional redundancy $${{{{{{\rm{FR}}}}}}}_{p}$$ FR p in the human gut microbiome using metaproteomics. Ultra-deep metaproteomics reveals high proteome-level functional redundancy and high nestedness in the human gut proteomic content networks (i.e., the bipartite graphs connecting taxa to functions). We find that the nested topology of proteomic content networks and relatively small functional distances between proteomes of certain pairs of taxa together contribute to high $${{{{{{\rm{FR}}}}}}}_{p}$$ FR p in the human gut microbiome. As a metric comprehensively incorporating the factors of presence/absence of each function, protein abundances of each function and biomass of each taxon, $${{{{{{\rm{FR}}}}}}}_{p}$$ FR p outcompetes diversity indices in detecting significant microbiome responses to environmental factors, including individuality, biogeography, xenobiotics, and disease. We show that gut inflammation and exposure to specific xenobiotics can significantly diminish the $${{{{{{\rm{FR}}}}}}}_{p}$$ FR p with no significant change in taxonomic diversity.https://doi.org/10.1038/s41467-023-39149-2
spellingShingle Leyuan Li
Tong Wang
Zhibin Ning
Xu Zhang
James Butcher
Joeselle M. Serrana
Caitlin M. A. Simopoulos
Janice Mayne
Alain Stintzi
David R. Mack
Yang-Yu Liu
Daniel Figeys
Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics
Nature Communications
title Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics
title_full Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics
title_fullStr Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics
title_full_unstemmed Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics
title_short Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics
title_sort revealing proteome level functional redundancy in the human gut microbiome using ultra deep metaproteomics
url https://doi.org/10.1038/s41467-023-39149-2
work_keys_str_mv AT leyuanli revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics
AT tongwang revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics
AT zhibinning revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics
AT xuzhang revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics
AT jamesbutcher revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics
AT joesellemserrana revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics
AT caitlinmasimopoulos revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics
AT janicemayne revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics
AT alainstintzi revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics
AT davidrmack revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics
AT yangyuliu revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics
AT danielfigeys revealingproteomelevelfunctionalredundancyinthehumangutmicrobiomeusingultradeepmetaproteomics