In-Depth Lipidomic Analysis of Molecular Species of Triacylglycerides, Diacylglycerides, Glycerophospholipids, and Sphingolipids of Buttermilk by GC-MS/FID, HPLC-ELSD, and UPLC-QToF-MS

Buttermilk, a byproduct of butter manufacturing, has gained considerable attention due to its high concentration of polar lipids as phospho- and sphingolipids from the milk fat globule membrane (MFGM). These polar lipids (PLs) are essential components of all cellular membranes and exert a variety of...

Full description

Bibliographic Details
Main Authors: Pilar Castro-Gómez, Olimpio Montero, Javier Fontecha
Format: Article
Language:English
Published: MDPI AG 2017-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/18/3/605
_version_ 1811260097502904320
author Pilar Castro-Gómez
Olimpio Montero
Javier Fontecha
author_facet Pilar Castro-Gómez
Olimpio Montero
Javier Fontecha
author_sort Pilar Castro-Gómez
collection DOAJ
description Buttermilk, a byproduct of butter manufacturing, has gained considerable attention due to its high concentration of polar lipids as phospho- and sphingolipids from the milk fat globule membrane (MFGM). These polar lipids (PLs) are essential components of all cellular membranes and exert a variety of indispensable metabolic, neurological, and intracellular signaling processes. Despite its importance, there are few research studies that report a comprehensive characterization of the lipid molecular species of MFGM that could contribute to a better understanding of their putative healthful activities. In this study, procedures such as pressurized liquid extraction of polar and nonpolar lipids and their fractionation by flash chromatography have been carried out. The obtained fractions were submitted to an exhaustive characterization from a lipidomic point of view. The characterization includes new data about the identification and quantification of triacylglycerides (TAG), diacylglycerides (DAG), and phospho- and sphingolipids using different chromatographic techniques. The fatty acid profile was comparable to that of the milk fat but with a highly diverse composition of fatty acids. Molecular species have also been determined by using ultra-high performance liquid chromatography/quadruple-time-of-flight mass spectrometry (UPLC/QToF-MS). The TAG (16:0/16:0/6:0) and TAG (16:0/16:0/8:0) were the predominant saturated TAG species and TAG (14:0/18:1/16:0) and TAG (16:0/16:0/18:1) presented the highest content of monounsaturated TAG species. Furthermore; over 30 molecular species of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) could be identified within PL, with PC (16:0/18:1) being the most abundant species. Whereas C16:0 was found to be the preferred FA in TAGs, it was C18:1 in PLs. Several ganglioside species have also been characterized with d18:1 ceramide moiety and secondary acyl chains ranging from C20:0 to C26:1. This approach could broaden the applications of high-resolution mass spectrometry for a better understanding of the role of MFGM and its functionality.
first_indexed 2024-04-12T18:41:27Z
format Article
id doaj.art-5d47a234fd0f4ecc949a1c48a4e49244
institution Directory Open Access Journal
issn 1422-0067
language English
last_indexed 2024-04-12T18:41:27Z
publishDate 2017-03-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-5d47a234fd0f4ecc949a1c48a4e492442022-12-22T03:20:45ZengMDPI AGInternational Journal of Molecular Sciences1422-00672017-03-0118360510.3390/ijms18030605ijms18030605In-Depth Lipidomic Analysis of Molecular Species of Triacylglycerides, Diacylglycerides, Glycerophospholipids, and Sphingolipids of Buttermilk by GC-MS/FID, HPLC-ELSD, and UPLC-QToF-MSPilar Castro-Gómez0Olimpio Montero1Javier Fontecha2Institute of Food Science Research, Spanish National Research Council (CIAL, CSIC-UAM), Bioactivity and Food Analysis Department, Food Lipid Biomarkers and Health, Campus of Autonoma University of Madrid, 28049 Madrid, SpainCentre for Biotechnology Development, Spanish National Research Council (CDB, CSIC), 47151 Valladolid, SpainInstitute of Food Science Research, Spanish National Research Council (CIAL, CSIC-UAM), Bioactivity and Food Analysis Department, Food Lipid Biomarkers and Health, Campus of Autonoma University of Madrid, 28049 Madrid, SpainButtermilk, a byproduct of butter manufacturing, has gained considerable attention due to its high concentration of polar lipids as phospho- and sphingolipids from the milk fat globule membrane (MFGM). These polar lipids (PLs) are essential components of all cellular membranes and exert a variety of indispensable metabolic, neurological, and intracellular signaling processes. Despite its importance, there are few research studies that report a comprehensive characterization of the lipid molecular species of MFGM that could contribute to a better understanding of their putative healthful activities. In this study, procedures such as pressurized liquid extraction of polar and nonpolar lipids and their fractionation by flash chromatography have been carried out. The obtained fractions were submitted to an exhaustive characterization from a lipidomic point of view. The characterization includes new data about the identification and quantification of triacylglycerides (TAG), diacylglycerides (DAG), and phospho- and sphingolipids using different chromatographic techniques. The fatty acid profile was comparable to that of the milk fat but with a highly diverse composition of fatty acids. Molecular species have also been determined by using ultra-high performance liquid chromatography/quadruple-time-of-flight mass spectrometry (UPLC/QToF-MS). The TAG (16:0/16:0/6:0) and TAG (16:0/16:0/8:0) were the predominant saturated TAG species and TAG (14:0/18:1/16:0) and TAG (16:0/16:0/18:1) presented the highest content of monounsaturated TAG species. Furthermore; over 30 molecular species of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) could be identified within PL, with PC (16:0/18:1) being the most abundant species. Whereas C16:0 was found to be the preferred FA in TAGs, it was C18:1 in PLs. Several ganglioside species have also been characterized with d18:1 ceramide moiety and secondary acyl chains ranging from C20:0 to C26:1. This approach could broaden the applications of high-resolution mass spectrometry for a better understanding of the role of MFGM and its functionality.http://www.mdpi.com/1422-0067/18/3/605buttermilkpolar lipidsphospholipidssphingolipidsUPLC-QToF-MS
spellingShingle Pilar Castro-Gómez
Olimpio Montero
Javier Fontecha
In-Depth Lipidomic Analysis of Molecular Species of Triacylglycerides, Diacylglycerides, Glycerophospholipids, and Sphingolipids of Buttermilk by GC-MS/FID, HPLC-ELSD, and UPLC-QToF-MS
International Journal of Molecular Sciences
buttermilk
polar lipids
phospholipids
sphingolipids
UPLC-QToF-MS
title In-Depth Lipidomic Analysis of Molecular Species of Triacylglycerides, Diacylglycerides, Glycerophospholipids, and Sphingolipids of Buttermilk by GC-MS/FID, HPLC-ELSD, and UPLC-QToF-MS
title_full In-Depth Lipidomic Analysis of Molecular Species of Triacylglycerides, Diacylglycerides, Glycerophospholipids, and Sphingolipids of Buttermilk by GC-MS/FID, HPLC-ELSD, and UPLC-QToF-MS
title_fullStr In-Depth Lipidomic Analysis of Molecular Species of Triacylglycerides, Diacylglycerides, Glycerophospholipids, and Sphingolipids of Buttermilk by GC-MS/FID, HPLC-ELSD, and UPLC-QToF-MS
title_full_unstemmed In-Depth Lipidomic Analysis of Molecular Species of Triacylglycerides, Diacylglycerides, Glycerophospholipids, and Sphingolipids of Buttermilk by GC-MS/FID, HPLC-ELSD, and UPLC-QToF-MS
title_short In-Depth Lipidomic Analysis of Molecular Species of Triacylglycerides, Diacylglycerides, Glycerophospholipids, and Sphingolipids of Buttermilk by GC-MS/FID, HPLC-ELSD, and UPLC-QToF-MS
title_sort in depth lipidomic analysis of molecular species of triacylglycerides diacylglycerides glycerophospholipids and sphingolipids of buttermilk by gc ms fid hplc elsd and uplc qtof ms
topic buttermilk
polar lipids
phospholipids
sphingolipids
UPLC-QToF-MS
url http://www.mdpi.com/1422-0067/18/3/605
work_keys_str_mv AT pilarcastrogomez indepthlipidomicanalysisofmolecularspeciesoftriacylglyceridesdiacylglyceridesglycerophospholipidsandsphingolipidsofbuttermilkbygcmsfidhplcelsdanduplcqtofms
AT olimpiomontero indepthlipidomicanalysisofmolecularspeciesoftriacylglyceridesdiacylglyceridesglycerophospholipidsandsphingolipidsofbuttermilkbygcmsfidhplcelsdanduplcqtofms
AT javierfontecha indepthlipidomicanalysisofmolecularspeciesoftriacylglyceridesdiacylglyceridesglycerophospholipidsandsphingolipidsofbuttermilkbygcmsfidhplcelsdanduplcqtofms