DCEF<sup>2</sup>-YOLO: Aerial Detection YOLO with Deformable Convolution–Efficient Feature Fusion for Small Target Detection

Deep learning technology for real-time small object detection in aerial images can be used in various industrial environments such as real-time traffic surveillance and military reconnaissance. However, detecting small objects with few pixels and low resolution remains a challenging problem that req...

Full description

Bibliographic Details
Main Authors: Yeonha Shin, Heesub Shin, Jaewoo Ok, Minyoung Back, Jaehyuk Youn, Sungho Kim
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/16/6/1071
_version_ 1797239445114585088
author Yeonha Shin
Heesub Shin
Jaewoo Ok
Minyoung Back
Jaehyuk Youn
Sungho Kim
author_facet Yeonha Shin
Heesub Shin
Jaewoo Ok
Minyoung Back
Jaehyuk Youn
Sungho Kim
author_sort Yeonha Shin
collection DOAJ
description Deep learning technology for real-time small object detection in aerial images can be used in various industrial environments such as real-time traffic surveillance and military reconnaissance. However, detecting small objects with few pixels and low resolution remains a challenging problem that requires performance improvement. To improve the performance of small object detection, we propose DCEF<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mspace width="-2.pt"></mspace><mo> </mo></mrow><mn>2</mn></msup></semantics></math></inline-formula>-YOLO. Our proposed method enables efficient real-time small object detection by using a deformable convolution (DFConv) module and an efficient feature fusion structure to maximize the use of the internal feature information of objects. DFConv preserves small object information by preventing the mixing of object information with the background. The optimized feature fusion structure produces high-quality feature maps for efficient real-time small object detection while maximizing the use of limited information. Additionally, modifying the input data processing stage and reducing the detection layer to suit small object detection also contributes to performance improvement. When compared to the performance of the latest YOLO-based models (such as DCN-YOLO and YOLOv7), DCEF<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mspace width="-2.pt"></mspace><mo> </mo></mrow><mn>2</mn></msup></semantics></math></inline-formula>-YOLO outperforms them, with a mAP of +6.1% on the DOTA-v1.0 test set, +0.3% on the NWPU VHR-10 test set, and +1.5% on the VEDAI512 test set. Furthermore, it has a fast processing speed of 120.48 FPS with an RTX3090 for 512 × 512 images, making it suitable for real-time small object detection tasks.
first_indexed 2024-04-24T17:51:39Z
format Article
id doaj.art-5d61a00dae5b4b9e9507962b9dbc44bb
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-04-24T17:51:39Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-5d61a00dae5b4b9e9507962b9dbc44bb2024-03-27T14:02:47ZengMDPI AGRemote Sensing2072-42922024-03-01166107110.3390/rs16061071DCEF<sup>2</sup>-YOLO: Aerial Detection YOLO with Deformable Convolution–Efficient Feature Fusion for Small Target DetectionYeonha Shin0Heesub Shin1Jaewoo Ok2Minyoung Back3Jaehyuk Youn4Sungho Kim5Advanced Visual Intelligence Laboratory, Department of Electronic Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of KoreaLIG Nex1 Co., Ltd., Yongin 16911, Republic of KoreaLIG Nex1 Co., Ltd., Yongin 16911, Republic of KoreaLIG Nex1 Co., Ltd., Yongin 16911, Republic of KoreaLIG Nex1 Co., Ltd., Yongin 16911, Republic of KoreaAdvanced Visual Intelligence Laboratory, Department of Electronic Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of KoreaDeep learning technology for real-time small object detection in aerial images can be used in various industrial environments such as real-time traffic surveillance and military reconnaissance. However, detecting small objects with few pixels and low resolution remains a challenging problem that requires performance improvement. To improve the performance of small object detection, we propose DCEF<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mspace width="-2.pt"></mspace><mo> </mo></mrow><mn>2</mn></msup></semantics></math></inline-formula>-YOLO. Our proposed method enables efficient real-time small object detection by using a deformable convolution (DFConv) module and an efficient feature fusion structure to maximize the use of the internal feature information of objects. DFConv preserves small object information by preventing the mixing of object information with the background. The optimized feature fusion structure produces high-quality feature maps for efficient real-time small object detection while maximizing the use of limited information. Additionally, modifying the input data processing stage and reducing the detection layer to suit small object detection also contributes to performance improvement. When compared to the performance of the latest YOLO-based models (such as DCN-YOLO and YOLOv7), DCEF<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mspace width="-2.pt"></mspace><mo> </mo></mrow><mn>2</mn></msup></semantics></math></inline-formula>-YOLO outperforms them, with a mAP of +6.1% on the DOTA-v1.0 test set, +0.3% on the NWPU VHR-10 test set, and +1.5% on the VEDAI512 test set. Furthermore, it has a fast processing speed of 120.48 FPS with an RTX3090 for 512 × 512 images, making it suitable for real-time small object detection tasks.https://www.mdpi.com/2072-4292/16/6/1071aerial object detectionsmall target detectionreal-time object detectionDCNdeformable convolutionfeature fusion
spellingShingle Yeonha Shin
Heesub Shin
Jaewoo Ok
Minyoung Back
Jaehyuk Youn
Sungho Kim
DCEF<sup>2</sup>-YOLO: Aerial Detection YOLO with Deformable Convolution–Efficient Feature Fusion for Small Target Detection
Remote Sensing
aerial object detection
small target detection
real-time object detection
DCN
deformable convolution
feature fusion
title DCEF<sup>2</sup>-YOLO: Aerial Detection YOLO with Deformable Convolution–Efficient Feature Fusion for Small Target Detection
title_full DCEF<sup>2</sup>-YOLO: Aerial Detection YOLO with Deformable Convolution–Efficient Feature Fusion for Small Target Detection
title_fullStr DCEF<sup>2</sup>-YOLO: Aerial Detection YOLO with Deformable Convolution–Efficient Feature Fusion for Small Target Detection
title_full_unstemmed DCEF<sup>2</sup>-YOLO: Aerial Detection YOLO with Deformable Convolution–Efficient Feature Fusion for Small Target Detection
title_short DCEF<sup>2</sup>-YOLO: Aerial Detection YOLO with Deformable Convolution–Efficient Feature Fusion for Small Target Detection
title_sort dcef sup 2 sup yolo aerial detection yolo with deformable convolution efficient feature fusion for small target detection
topic aerial object detection
small target detection
real-time object detection
DCN
deformable convolution
feature fusion
url https://www.mdpi.com/2072-4292/16/6/1071
work_keys_str_mv AT yeonhashin dcefsup2supyoloaerialdetectionyolowithdeformableconvolutionefficientfeaturefusionforsmalltargetdetection
AT heesubshin dcefsup2supyoloaerialdetectionyolowithdeformableconvolutionefficientfeaturefusionforsmalltargetdetection
AT jaewoook dcefsup2supyoloaerialdetectionyolowithdeformableconvolutionefficientfeaturefusionforsmalltargetdetection
AT minyoungback dcefsup2supyoloaerialdetectionyolowithdeformableconvolutionefficientfeaturefusionforsmalltargetdetection
AT jaehyukyoun dcefsup2supyoloaerialdetectionyolowithdeformableconvolutionefficientfeaturefusionforsmalltargetdetection
AT sunghokim dcefsup2supyoloaerialdetectionyolowithdeformableconvolutionefficientfeaturefusionforsmalltargetdetection