A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent
The fractional Hardy-type operators of variable order is shown to be bounded from the grand Herz spaces $ {\dot{K} ^{a(\cdot), u), \theta}_{ p(\cdot)}(\mathbb{R}^n)} $ with variable exponent into the weighted space $ {\dot{K} ^{a(\cdot), u), \theta}_{\rho, q(\cdot)}(\mathbb{R}^n)} $, where $ \rho =...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2023-07-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.20231130?viewType=HTML |
Summary: | The fractional Hardy-type operators of variable order is shown to be bounded from the grand Herz spaces $ {\dot{K} ^{a(\cdot), u), \theta}_{ p(\cdot)}(\mathbb{R}^n)} $ with variable exponent into the weighted space $ {\dot{K} ^{a(\cdot), u), \theta}_{\rho, q(\cdot)}(\mathbb{R}^n)} $, where $ \rho = (1+|z_1|)^{-\lambda} $ and
$ {1 \over q(z)} = {1 \over p(z)}-{\zeta (z) \over n} $
<p>when $ p(z) $ is not necessarily constant at infinity. |
---|---|
ISSN: | 2473-6988 |