A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent

The fractional Hardy-type operators of variable order is shown to be bounded from the grand Herz spaces $ {\dot{K} ^{a(\cdot), u), \theta}_{ p(\cdot)}(\mathbb{R}^n)} $ with variable exponent into the weighted space $ {\dot{K} ^{a(\cdot), u), \theta}_{\rho, q(\cdot)}(\mathbb{R}^n)} $, where $ \rho =...

Full description

Bibliographic Details
Main Authors: Samia Bashir, Babar Sultan, Amjad Hussain, Aziz Khan, Thabet Abdeljawad
Format: Article
Language:English
Published: AIMS Press 2023-07-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20231130?viewType=HTML
_version_ 1797771629908983808
author Samia Bashir
Babar Sultan
Amjad Hussain
Aziz Khan
Thabet Abdeljawad
author_facet Samia Bashir
Babar Sultan
Amjad Hussain
Aziz Khan
Thabet Abdeljawad
author_sort Samia Bashir
collection DOAJ
description The fractional Hardy-type operators of variable order is shown to be bounded from the grand Herz spaces $ {\dot{K} ^{a(\cdot), u), \theta}_{ p(\cdot)}(\mathbb{R}^n)} $ with variable exponent into the weighted space $ {\dot{K} ^{a(\cdot), u), \theta}_{\rho, q(\cdot)}(\mathbb{R}^n)} $, where $ \rho = (1+|z_1|)^{-\lambda} $ and $ {1 \over q(z)} = {1 \over p(z)}-{\zeta (z) \over n} $ <p>when $ p(z) $ is not necessarily constant at infinity.
first_indexed 2024-03-12T21:40:22Z
format Article
id doaj.art-5d655327cbeb4a2eba27ac3eefc615d6
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-03-12T21:40:22Z
publishDate 2023-07-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-5d655327cbeb4a2eba27ac3eefc615d62023-07-27T01:18:27ZengAIMS PressAIMS Mathematics2473-69882023-07-0189221782219110.3934/math.20231130A note on the boundedness of Hardy operators in grand Herz spaces with variable exponentSamia Bashir0Babar Sultan1Amjad Hussain2Aziz Khan3Thabet Abdeljawad 41. Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, Pakistan1. Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, Pakistan1. Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, Pakistan2. Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia2. Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia 3. Department of Medical Research, China Medical University, Taichung 40402, Taiwan 4. Department of Mathematics, Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, KoreaThe fractional Hardy-type operators of variable order is shown to be bounded from the grand Herz spaces $ {\dot{K} ^{a(\cdot), u), \theta}_{ p(\cdot)}(\mathbb{R}^n)} $ with variable exponent into the weighted space $ {\dot{K} ^{a(\cdot), u), \theta}_{\rho, q(\cdot)}(\mathbb{R}^n)} $, where $ \rho = (1+|z_1|)^{-\lambda} $ and $ {1 \over q(z)} = {1 \over p(z)}-{\zeta (z) \over n} $ <p>when $ p(z) $ is not necessarily constant at infinity.https://www.aimspress.com/article/doi/10.3934/math.20231130?viewType=HTMLlebesgue spacesweighted estimateshardy operatorsgrand herz spaces
spellingShingle Samia Bashir
Babar Sultan
Amjad Hussain
Aziz Khan
Thabet Abdeljawad
A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent
AIMS Mathematics
lebesgue spaces
weighted estimates
hardy operators
grand herz spaces
title A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent
title_full A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent
title_fullStr A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent
title_full_unstemmed A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent
title_short A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent
title_sort note on the boundedness of hardy operators in grand herz spaces with variable exponent
topic lebesgue spaces
weighted estimates
hardy operators
grand herz spaces
url https://www.aimspress.com/article/doi/10.3934/math.20231130?viewType=HTML
work_keys_str_mv AT samiabashir anoteontheboundednessofhardyoperatorsingrandherzspaceswithvariableexponent
AT babarsultan anoteontheboundednessofhardyoperatorsingrandherzspaceswithvariableexponent
AT amjadhussain anoteontheboundednessofhardyoperatorsingrandherzspaceswithvariableexponent
AT azizkhan anoteontheboundednessofhardyoperatorsingrandherzspaceswithvariableexponent
AT thabetabdeljawad anoteontheboundednessofhardyoperatorsingrandherzspaceswithvariableexponent
AT samiabashir noteontheboundednessofhardyoperatorsingrandherzspaceswithvariableexponent
AT babarsultan noteontheboundednessofhardyoperatorsingrandherzspaceswithvariableexponent
AT amjadhussain noteontheboundednessofhardyoperatorsingrandherzspaceswithvariableexponent
AT azizkhan noteontheboundednessofhardyoperatorsingrandherzspaceswithvariableexponent
AT thabetabdeljawad noteontheboundednessofhardyoperatorsingrandherzspaceswithvariableexponent