A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts

We review several one-dimensional problems such as those involving linear Schrödinger equation, variable-coefficient Helmholtz equation, Zakharov–Shabat system and Kubelka–Munk equations. We show that they all can be reduced to solving one simple antilinear ordinary differential equation <inline-...

Full description

Bibliographic Details
Main Author: Dmitry Ponomarev
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:AppliedMath
Subjects:
Online Access:https://www.mdpi.com/2673-9909/2/3/24
_version_ 1797466035457097728
author Dmitry Ponomarev
author_facet Dmitry Ponomarev
author_sort Dmitry Ponomarev
collection DOAJ
description We review several one-dimensional problems such as those involving linear Schrödinger equation, variable-coefficient Helmholtz equation, Zakharov–Shabat system and Kubelka–Munk equations. We show that they all can be reduced to solving one simple antilinear ordinary differential equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>u</mi><mo>′</mo></msup><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>=</mo><mi>f</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mover><mrow><mi>u</mi><mfenced open="(" close=")"><mi>x</mi></mfenced></mrow><mo>¯</mo></mover></mrow></semantics></math></inline-formula> or its nonhomogeneous version <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>u</mi><mo>′</mo></msup><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>=</mo><mi>f</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mover><mrow><mi>u</mi><mfenced open="(" close=")"><mi>x</mi></mfenced></mrow><mo>¯</mo></mover><mo>+</mo><mi>g</mi><mfenced open="(" close=")"><mi>x</mi></mfenced></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><mfenced separators="" open="(" close=")"><mn>0</mn><mo>,</mo><msub><mi>x</mi><mn>0</mn></msub></mfenced><mo>⊂</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>. We point out some of the advantages of the proposed reformulation and call for further investigation of the obtained ODE.
first_indexed 2024-03-09T18:30:16Z
format Article
id doaj.art-5d6691a076a04ca4b0570079c0faa9ba
institution Directory Open Access Journal
issn 2673-9909
language English
last_indexed 2024-03-09T18:30:16Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series AppliedMath
spelling doaj.art-5d6691a076a04ca4b0570079c0faa9ba2023-11-24T07:33:07ZengMDPI AGAppliedMath2673-99092022-07-012343344510.3390/appliedmath2030024A Note on the Appearance of the Simplest Antilinear ODE in Several Physical ContextsDmitry Ponomarev0Institute of Analysis & Scientific Computing, Vienna University of Technology (TU Wien), Wiedner Hauptstrasse 8-10, 1040 Wien, AustriaWe review several one-dimensional problems such as those involving linear Schrödinger equation, variable-coefficient Helmholtz equation, Zakharov–Shabat system and Kubelka–Munk equations. We show that they all can be reduced to solving one simple antilinear ordinary differential equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>u</mi><mo>′</mo></msup><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>=</mo><mi>f</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mover><mrow><mi>u</mi><mfenced open="(" close=")"><mi>x</mi></mfenced></mrow><mo>¯</mo></mover></mrow></semantics></math></inline-formula> or its nonhomogeneous version <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>u</mi><mo>′</mo></msup><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>=</mo><mi>f</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mover><mrow><mi>u</mi><mfenced open="(" close=")"><mi>x</mi></mfenced></mrow><mo>¯</mo></mover><mo>+</mo><mi>g</mi><mfenced open="(" close=")"><mi>x</mi></mfenced></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><mfenced separators="" open="(" close=")"><mn>0</mn><mo>,</mo><msub><mi>x</mi><mn>0</mn></msub></mfenced><mo>⊂</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>. We point out some of the advantages of the proposed reformulation and call for further investigation of the obtained ODE.https://www.mdpi.com/2673-9909/2/3/24Helmholtz equationSchrödinger equationKubelka–Munk system
spellingShingle Dmitry Ponomarev
A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts
AppliedMath
Helmholtz equation
Schrödinger equation
Kubelka–Munk system
title A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts
title_full A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts
title_fullStr A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts
title_full_unstemmed A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts
title_short A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts
title_sort note on the appearance of the simplest antilinear ode in several physical contexts
topic Helmholtz equation
Schrödinger equation
Kubelka–Munk system
url https://www.mdpi.com/2673-9909/2/3/24
work_keys_str_mv AT dmitryponomarev anoteontheappearanceofthesimplestantilinearodeinseveralphysicalcontexts
AT dmitryponomarev noteontheappearanceofthesimplestantilinearodeinseveralphysicalcontexts