Summary: | Graphene quantum dots (GQDs) were synthesized using watermelon rind waste as a photoluminescent (PL) agent for ferric ion (Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula>) detection and in vitro cellular bio-imaging. A green and simple one-pot hydrothermal technique was employed to prepare the GQDs. Their crystalline structures corresponded to the lattice fringe of graphene, possessing amide, hydroxyl, and carboxyl functional groups. The GQDs exhibited a relatively high quantum yield of approximately 37%. Prominent blue emission under UV excitation and highly selective PL quenching for Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> were observed. Furthermore, Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> could be detected at concentrations as low as 0.28 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>M (limit of detection), allowing for high sensitivity toward Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> detection in tap and drinking water samples. In the bio-imaging experiment, the GQDs exhibited a low cytotoxicity for the HeLa cells, and they were clearly illuminated at an excitation wavelength of 405 nm. These results can serve as the basis for developing an environment-friendly, simple, and cost-effective approach of using food waste by converting them into photoluminescent nanomaterials for the detection of metal ions in field water samples and biological cellular studies.
|