Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach

<p>Abstract</p> <p>Background</p> <p>Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus and the best studied member of the order <it>Mononegavirales</it>. There is now compelling evidence that enveloped virions released from infected cells carry...

Full description

Bibliographic Details
Main Authors: Hwang Sun-Il, Moerdyk-Schauwecker Megan, Grdzelishvili Valery Z
Format: Article
Language:English
Published: BMC 2009-10-01
Series:Virology Journal
Online Access:http://www.virologyj.com/content/6/1/166
_version_ 1828495110726221824
author Hwang Sun-Il
Moerdyk-Schauwecker Megan
Grdzelishvili Valery Z
author_facet Hwang Sun-Il
Moerdyk-Schauwecker Megan
Grdzelishvili Valery Z
author_sort Hwang Sun-Il
collection DOAJ
description <p>Abstract</p> <p>Background</p> <p>Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus and the best studied member of the order <it>Mononegavirales</it>. There is now compelling evidence that enveloped virions released from infected cells carry numerous host (cellular) proteins some of which may play an important role in viral replication. Although several cellular proteins have been previously shown to be incorporated into VSV virions, no systematic study has been done to reveal the host protein composition for virions of VSV or any other member of <it>Mononegavirales</it>.</p> <p>Results</p> <p>Here we used a proteomics approach to identify cellular proteins within purified VSV virions, thereby creating a "snapshot" of one stage of virus/host interaction that can guide future experiments aimed at understanding molecular mechanisms of virus-cell interactions. Highly purified preparations of VSV virions from three different cell lines of human, mouse and hamster origin were analyzed for the presence of cellular proteins using mass spectrometry. We have successfully confirmed the presence of several previously-identified cellular proteins within VSV virions and identified a number of additional proteins likely to also be present within the virions. In total, sixty-four cellular proteins were identified, of which nine were found in multiple preparations. A combination of immunoblotting and proteinase K protection assay was used to verify the presence of several of these proteins (integrin β1, heat shock protein 90 kDa, heat shock cognate 71 kDa protein, annexin 2, elongation factor 1a) within the virions.</p> <p>Conclusion</p> <p>This is, to our knowledge, the first systematic study of the host protein composition for virions of VSV or any other member of the order <it>Mononegavirales</it>. Future experiments are needed to determine which of the identified proteins have an interaction with VSV and whether these interactions are beneficial, neutral or antiviral with respect to VSV replication. Identification of host proteins-virus interactions beneficial for virus would be particularly exciting as they can provide new ways to combat viral infections via control of host components.</p>
first_indexed 2024-12-11T12:07:49Z
format Article
id doaj.art-5d867459290340dc930dda371fdbbe23
institution Directory Open Access Journal
issn 1743-422X
language English
last_indexed 2024-12-11T12:07:49Z
publishDate 2009-10-01
publisher BMC
record_format Article
series Virology Journal
spelling doaj.art-5d867459290340dc930dda371fdbbe232022-12-22T01:07:53ZengBMCVirology Journal1743-422X2009-10-016116610.1186/1743-422X-6-166Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approachHwang Sun-IlMoerdyk-Schauwecker MeganGrdzelishvili Valery Z<p>Abstract</p> <p>Background</p> <p>Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus and the best studied member of the order <it>Mononegavirales</it>. There is now compelling evidence that enveloped virions released from infected cells carry numerous host (cellular) proteins some of which may play an important role in viral replication. Although several cellular proteins have been previously shown to be incorporated into VSV virions, no systematic study has been done to reveal the host protein composition for virions of VSV or any other member of <it>Mononegavirales</it>.</p> <p>Results</p> <p>Here we used a proteomics approach to identify cellular proteins within purified VSV virions, thereby creating a "snapshot" of one stage of virus/host interaction that can guide future experiments aimed at understanding molecular mechanisms of virus-cell interactions. Highly purified preparations of VSV virions from three different cell lines of human, mouse and hamster origin were analyzed for the presence of cellular proteins using mass spectrometry. We have successfully confirmed the presence of several previously-identified cellular proteins within VSV virions and identified a number of additional proteins likely to also be present within the virions. In total, sixty-four cellular proteins were identified, of which nine were found in multiple preparations. A combination of immunoblotting and proteinase K protection assay was used to verify the presence of several of these proteins (integrin β1, heat shock protein 90 kDa, heat shock cognate 71 kDa protein, annexin 2, elongation factor 1a) within the virions.</p> <p>Conclusion</p> <p>This is, to our knowledge, the first systematic study of the host protein composition for virions of VSV or any other member of the order <it>Mononegavirales</it>. Future experiments are needed to determine which of the identified proteins have an interaction with VSV and whether these interactions are beneficial, neutral or antiviral with respect to VSV replication. Identification of host proteins-virus interactions beneficial for virus would be particularly exciting as they can provide new ways to combat viral infections via control of host components.</p>http://www.virologyj.com/content/6/1/166
spellingShingle Hwang Sun-Il
Moerdyk-Schauwecker Megan
Grdzelishvili Valery Z
Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach
Virology Journal
title Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach
title_full Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach
title_fullStr Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach
title_full_unstemmed Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach
title_short Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach
title_sort analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach
url http://www.virologyj.com/content/6/1/166
work_keys_str_mv AT hwangsunil analysisofvirionassociatedhostproteinsinvesicularstomatitisvirususingaproteomicsapproach
AT moerdykschauweckermegan analysisofvirionassociatedhostproteinsinvesicularstomatitisvirususingaproteomicsapproach
AT grdzelishvilivaleryz analysisofvirionassociatedhostproteinsinvesicularstomatitisvirususingaproteomicsapproach