Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend
A polymeric bone implants have a distinctive advantage compared to metal implants due to their degradability in the local bone host. The usage of degradable implant prevents the need for an implant removal surgery especially if they fixated in challenging position such as maxillofacial area. Additio...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-01-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844021027031 |
_version_ | 1819276071300759552 |
---|---|
author | Y. Whulanza A. Azadi S. Supriadi S.F. Rahman M. Chalid M. Irsyad M.H. Nadhif P. Kreshanti |
author_facet | Y. Whulanza A. Azadi S. Supriadi S.F. Rahman M. Chalid M. Irsyad M.H. Nadhif P. Kreshanti |
author_sort | Y. Whulanza |
collection | DOAJ |
description | A polymeric bone implants have a distinctive advantage compared to metal implants due to their degradability in the local bone host. The usage of degradable implant prevents the need for an implant removal surgery especially if they fixated in challenging position such as maxillofacial area. Additionally, this fixation system has been widely applied in fixing maxillofacial fracture in child patients. An ideal degradable implant has a considerable mass degradation rate that proved structural integrity to the healing bone. At this moment, poly(lactic acid) (PLA) or poly(lactic-co-glycolic acid) (PLGA) are the most common materials used as degradable implant. This composition of materials has a degradation rate of more than a year. A long degradation rate increases the long-term biohazard risk for the bone host. Therefore, a faster degradation rate with adequate strength of implant is the focal point of this research. This study tailored the tunable degradability of starch with strength properties of PLA. Blending system of starch and PLA has been reported widely, but none of them were aimed to be utilized as medical implant. Here, various concentrations of sago starch/PLA and Polyethylene glycol (PEG) were composed to meet the requirement of maxillofacial miniplate implant. The implant was realized using an injection molding process to have a six-hole-miniplate with 1.2 mm thick and 34 mm length. The specimens were physiochemically characterized through X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and Fourier Transform Infrared spectroscopy. It is found that the microstructure and chemical interactions of the starch/PLA/PEG polymers are correlated with the mechanical characteristics of the blends. Compared to a pure PLA miniplate, the sago starch/PLA/PEG blend shows a 60–80% lower tensile strength and stiffness. However, the flexural strength and elongation break are improved. A degradation study was conducted to observe the mass degradation rate of miniplate for 10 weeks duration. It is found that a maximum concentration of 20% sago starch and 10% of PEG in the PLA blending has promising properties as desired. The blends showed a 100–150% higher degradability rate compared to the pure PLA or a commercial miniplate. The numerical simulation was conducted and confirmed that the miniplate in the mandibular area were shown to be endurable with standard applied loading. The mechanical properties resulted from the experimental work was applied in the Finite Element Analysis to find that our miniplate were in acceptable level. Lastly, the in-vitro test showed that implants are safe to human cell with viability more than 80%. These findings shall support the use of this miniplate in rehabilitating mandibular fractures with faster degradation with acceptance level of mechanical characteristic specifically in case of 4–6 weeks bone union. |
first_indexed | 2024-12-23T23:34:23Z |
format | Article |
id | doaj.art-5d9b9ac49cd1465c91ab5c0a1e405b5a |
institution | Directory Open Access Journal |
issn | 2405-8440 |
language | English |
last_indexed | 2024-12-23T23:34:23Z |
publishDate | 2022-01-01 |
publisher | Elsevier |
record_format | Article |
series | Heliyon |
spelling | doaj.art-5d9b9ac49cd1465c91ab5c0a1e405b5a2022-12-21T17:25:54ZengElsevierHeliyon2405-84402022-01-0181e08600Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blendY. Whulanza0A. Azadi1S. Supriadi2S.F. Rahman3M. Chalid4M. Irsyad5M.H. Nadhif6P. Kreshanti7Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia; Research Center on Biomedical Engineering, Universitas Indonesia, Indonesia; Corresponding author.Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia; Indonesian Agency for Agricultural Research and Development, IndonesiaDepartment of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia; Research Center on Biomedical Engineering, Universitas Indonesia, IndonesiaResearch Center on Biomedical Engineering, Universitas Indonesia, Indonesia; Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, IndonesiaDepartment of Metallurgical and Material Engineering, Faculty of Engineering, Universitas Indonesia, IndonesiaDepartment of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia; Medical Technology Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, IndonesiaMedical Technology Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Indonesia; Department of Medical Physics, Faculty of Medicine, Universitas Indonesia, IndonesiaResearch Center on Biomedical Engineering, Universitas Indonesia, Indonesia; Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, IndonesiaA polymeric bone implants have a distinctive advantage compared to metal implants due to their degradability in the local bone host. The usage of degradable implant prevents the need for an implant removal surgery especially if they fixated in challenging position such as maxillofacial area. Additionally, this fixation system has been widely applied in fixing maxillofacial fracture in child patients. An ideal degradable implant has a considerable mass degradation rate that proved structural integrity to the healing bone. At this moment, poly(lactic acid) (PLA) or poly(lactic-co-glycolic acid) (PLGA) are the most common materials used as degradable implant. This composition of materials has a degradation rate of more than a year. A long degradation rate increases the long-term biohazard risk for the bone host. Therefore, a faster degradation rate with adequate strength of implant is the focal point of this research. This study tailored the tunable degradability of starch with strength properties of PLA. Blending system of starch and PLA has been reported widely, but none of them were aimed to be utilized as medical implant. Here, various concentrations of sago starch/PLA and Polyethylene glycol (PEG) were composed to meet the requirement of maxillofacial miniplate implant. The implant was realized using an injection molding process to have a six-hole-miniplate with 1.2 mm thick and 34 mm length. The specimens were physiochemically characterized through X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and Fourier Transform Infrared spectroscopy. It is found that the microstructure and chemical interactions of the starch/PLA/PEG polymers are correlated with the mechanical characteristics of the blends. Compared to a pure PLA miniplate, the sago starch/PLA/PEG blend shows a 60–80% lower tensile strength and stiffness. However, the flexural strength and elongation break are improved. A degradation study was conducted to observe the mass degradation rate of miniplate for 10 weeks duration. It is found that a maximum concentration of 20% sago starch and 10% of PEG in the PLA blending has promising properties as desired. The blends showed a 100–150% higher degradability rate compared to the pure PLA or a commercial miniplate. The numerical simulation was conducted and confirmed that the miniplate in the mandibular area were shown to be endurable with standard applied loading. The mechanical properties resulted from the experimental work was applied in the Finite Element Analysis to find that our miniplate were in acceptable level. Lastly, the in-vitro test showed that implants are safe to human cell with viability more than 80%. These findings shall support the use of this miniplate in rehabilitating mandibular fractures with faster degradation with acceptance level of mechanical characteristic specifically in case of 4–6 weeks bone union.http://www.sciencedirect.com/science/article/pii/S2405844021027031Degradable implantMaxillofacial fractureFast implant degradationPediatric patientsSago starch/polylactic acid/polyethylene glycol blendFinite element analysis |
spellingShingle | Y. Whulanza A. Azadi S. Supriadi S.F. Rahman M. Chalid M. Irsyad M.H. Nadhif P. Kreshanti Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend Heliyon Degradable implant Maxillofacial fracture Fast implant degradation Pediatric patients Sago starch/polylactic acid/polyethylene glycol blend Finite element analysis |
title | Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend |
title_full | Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend |
title_fullStr | Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend |
title_full_unstemmed | Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend |
title_short | Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend |
title_sort | tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch polylactid acid blend |
topic | Degradable implant Maxillofacial fracture Fast implant degradation Pediatric patients Sago starch/polylactic acid/polyethylene glycol blend Finite element analysis |
url | http://www.sciencedirect.com/science/article/pii/S2405844021027031 |
work_keys_str_mv | AT ywhulanza tailoringmechanicalpropertiesanddegradationrateofmaxillofacialimplantbasedonsagostarchpolylactidacidblend AT aazadi tailoringmechanicalpropertiesanddegradationrateofmaxillofacialimplantbasedonsagostarchpolylactidacidblend AT ssupriadi tailoringmechanicalpropertiesanddegradationrateofmaxillofacialimplantbasedonsagostarchpolylactidacidblend AT sfrahman tailoringmechanicalpropertiesanddegradationrateofmaxillofacialimplantbasedonsagostarchpolylactidacidblend AT mchalid tailoringmechanicalpropertiesanddegradationrateofmaxillofacialimplantbasedonsagostarchpolylactidacidblend AT mirsyad tailoringmechanicalpropertiesanddegradationrateofmaxillofacialimplantbasedonsagostarchpolylactidacidblend AT mhnadhif tailoringmechanicalpropertiesanddegradationrateofmaxillofacialimplantbasedonsagostarchpolylactidacidblend AT pkreshanti tailoringmechanicalpropertiesanddegradationrateofmaxillofacialimplantbasedonsagostarchpolylactidacidblend |