Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity

Summary: Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD...

Full description

Bibliographic Details
Main Authors: Simón(e) D. Sun, Daniel Levenstein, Boxing Li, Nataniel Mandelberg, Nicolas Chenouard, Benjamin S. Suutari, Sandrine Sanchez, Guoling Tian, John Rinzel, György Buzsáki, Richard W. Tsien
Format: Article
Language:English
Published: Elsevier 2024-04-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124724001670
_version_ 1797253973693956096
author Simón(e) D. Sun
Daniel Levenstein
Boxing Li
Nataniel Mandelberg
Nicolas Chenouard
Benjamin S. Suutari
Sandrine Sanchez
Guoling Tian
John Rinzel
György Buzsáki
Richard W. Tsien
author_facet Simón(e) D. Sun
Daniel Levenstein
Boxing Li
Nataniel Mandelberg
Nicolas Chenouard
Benjamin S. Suutari
Sandrine Sanchez
Guoling Tian
John Rinzel
György Buzsáki
Richard W. Tsien
author_sort Simón(e) D. Sun
collection DOAJ
description Summary: Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.
first_indexed 2024-04-24T21:42:34Z
format Article
id doaj.art-5dbc5cec77d4460ab8a9a6266f3ea3b3
institution Directory Open Access Journal
issn 2211-1247
language English
last_indexed 2024-04-24T21:42:34Z
publishDate 2024-04-01
publisher Elsevier
record_format Article
series Cell Reports
spelling doaj.art-5dbc5cec77d4460ab8a9a6266f3ea3b32024-03-21T05:36:34ZengElsevierCell Reports2211-12472024-04-01434113839Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivitySimón(e) D. Sun0Daniel Levenstein1Boxing Li2Nataniel Mandelberg3Nicolas Chenouard4Benjamin S. Suutari5Sandrine Sanchez6Guoling Tian7John Rinzel8György Buzsáki9Richard W. Tsien10Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USACenter for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3810 University Street, Montreal, QC, CanadaDepartment of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, ChinaDepartment of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USADepartment of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Sorbonne Université, INSERM U1127, UMR CNRS 7225, Institut du Cerveau (ICM), 47 bld de l’hôpital, 75013 Paris, FranceCenter for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USADepartment of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USADepartment of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USACenter for Neural Science, New York University, New York, NY 10003, USADepartment of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USACenter for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Corresponding authorSummary: Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.http://www.sciencedirect.com/science/article/pii/S2211124724001670synapsehomeostasissynaptic scalingHebbian plasticitylong-term potentiationlong-term depression
spellingShingle Simón(e) D. Sun
Daniel Levenstein
Boxing Li
Nataniel Mandelberg
Nicolas Chenouard
Benjamin S. Suutari
Sandrine Sanchez
Guoling Tian
John Rinzel
György Buzsáki
Richard W. Tsien
Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity
Cell Reports
synapse
homeostasis
synaptic scaling
Hebbian plasticity
long-term potentiation
long-term depression
title Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity
title_full Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity
title_fullStr Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity
title_full_unstemmed Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity
title_short Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity
title_sort synaptic homeostasis transiently leverages hebbian mechanisms for a multiphasic response to inactivity
topic synapse
homeostasis
synaptic scaling
Hebbian plasticity
long-term potentiation
long-term depression
url http://www.sciencedirect.com/science/article/pii/S2211124724001670
work_keys_str_mv AT simonedsun synaptichomeostasistransientlyleverageshebbianmechanismsforamultiphasicresponsetoinactivity
AT daniellevenstein synaptichomeostasistransientlyleverageshebbianmechanismsforamultiphasicresponsetoinactivity
AT boxingli synaptichomeostasistransientlyleverageshebbianmechanismsforamultiphasicresponsetoinactivity
AT natanielmandelberg synaptichomeostasistransientlyleverageshebbianmechanismsforamultiphasicresponsetoinactivity
AT nicolaschenouard synaptichomeostasistransientlyleverageshebbianmechanismsforamultiphasicresponsetoinactivity
AT benjaminssuutari synaptichomeostasistransientlyleverageshebbianmechanismsforamultiphasicresponsetoinactivity
AT sandrinesanchez synaptichomeostasistransientlyleverageshebbianmechanismsforamultiphasicresponsetoinactivity
AT guolingtian synaptichomeostasistransientlyleverageshebbianmechanismsforamultiphasicresponsetoinactivity
AT johnrinzel synaptichomeostasistransientlyleverageshebbianmechanismsforamultiphasicresponsetoinactivity
AT gyorgybuzsaki synaptichomeostasistransientlyleverageshebbianmechanismsforamultiphasicresponsetoinactivity
AT richardwtsien synaptichomeostasistransientlyleverageshebbianmechanismsforamultiphasicresponsetoinactivity