Thermal Performance of Slotted Light Steel-Framed Composite Wall

In this study, calibrated hot box and finite element simulation methods were used to study the influence of a slotted web on the thermal performance of a lightweight steel stud composite wall. By comparing the results from the simulations and experiments, the accuracy of the finite element method wa...

Full description

Bibliographic Details
Main Authors: Zhijian Yang, Lisuo Sun, Bo Nan, Shunli Wei
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/5/2482
Description
Summary:In this study, calibrated hot box and finite element simulation methods were used to study the influence of a slotted web on the thermal performance of a lightweight steel stud composite wall. By comparing the results from the simulations and experiments, the accuracy of the finite element method was verified; this method was then used for parameter analyses. The results showed that the wall’s thermal transfer coefficient is inversely proportional to increases in the length of the slot and height of the stud web, leading to improvements in the thermal insulation effect; vice versa, the wall thermal transfer coefficient increases when the slot transverse spacing and stud thickness increase, and the insulation effect correspondingly worsens. The stud spacing influences the insulation performance of the wall by changing the proportion of studs within a certain wall. The greater the proportion of studs, the greater the stud thermal bridging, the faster the thermal loss, and the worse the insulation effect of the wall. In practice, the height of the stud web can be set as required. Preferably, for practical applications, the number of rows of slots is 5–7, the length of the slots is 70–80 mm, the transverse distance of the slots is 6–8 mm, the thickness of each stud is 1 or 1.2 mm, and the distance of each stud is 600 mm.
ISSN:1996-1073