Assessing the DNA Damaging Effectiveness of Ionizing Radiation Using Plasmid DNA

Plasmid DNA is useful for investigating the DNA damaging effects of ionizing radiation. In this study, we have explored the feasibility of plasmid DNA-based detectors to assess the DNA damaging effectiveness of two radiotherapy X-ray beam qualities after undergoing return shipment of ~8000 km betwee...

Full description

Bibliographic Details
Main Authors: Yara Maayah, Humza Nusrat, Geordi Pang, Mauro Tambasco
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/20/12459
Description
Summary:Plasmid DNA is useful for investigating the DNA damaging effects of ionizing radiation. In this study, we have explored the feasibility of plasmid DNA-based detectors to assess the DNA damaging effectiveness of two radiotherapy X-ray beam qualities after undergoing return shipment of ~8000 km between two institutions. The detectors consisted of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>18</mn><mrow><mo> </mo><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">L</mi></mrow></mrow></semantics></math></inline-formula> of pBR322 DNA enclosed with an aluminum seal in nine cylindrical cavities drilled into polycarbonate blocks. We shipped them to Toronto, Canada for irradiation with either <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>100</mn><mrow><mo> </mo><mi>kVp</mi><mo> </mo></mrow></mrow></semantics></math></inline-formula>or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><mrow><mo> </mo><mi>MV</mi><mo> </mo></mrow></mrow></semantics></math></inline-formula> X-ray beams to doses of 10, 20, and 30 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Gy</mi></mrow></semantics></math></inline-formula> in triplicate before being shipped back to San Diego, USA. The Toronto return shipment also included non-irradiated controls and we kept a separate set of controls in San Diego. In San Diego, we quantified DNA single strand breaks (SSBs), double strand breaks (DSBs), and applied Nth and Fpg enzymes to quantify oxidized base damage. The rate of DSBs/Gy/plasmid was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.8</mn><mo>±</mo><mn>0.7</mn><mo> </mo></mrow></semantics></math></inline-formula>greater for the 100 kVp than the 6 MV irradiation. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>100</mn><mrow><mo> </mo><mi>kVp</mi></mrow></mrow></semantics></math></inline-formula> irradiation also resulted in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>±</mo><mn>2</mn></mrow></semantics></math></inline-formula> times more DSBs/SSB than the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><mrow><mo> </mo><mi>MV</mi></mrow></mrow></semantics></math></inline-formula> beam, demonstrating that the detector is sensitive enough to quantify relative DNA damage effectiveness, even after shipment over thousands of kilometers.
ISSN:1661-6596
1422-0067