A structural annotation resource for the selection of putative target proteins in the malaria parasite
<p>Abstract</p> <p>Background</p> <p>Protein structure plays a pivotal role in elucidating mechanisms of parasite functioning and drug resistance. Moreover, protein structure aids the determination of protein function, which can together with the structure be used to id...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2008-05-01
|
Series: | Malaria Journal |
Online Access: | http://www.malariajournal.com/content/7/1/90 |
_version_ | 1818370445578076160 |
---|---|
author | Joubert Fourie Joubert Yolandi |
author_facet | Joubert Fourie Joubert Yolandi |
author_sort | Joubert Fourie |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>Protein structure plays a pivotal role in elucidating mechanisms of parasite functioning and drug resistance. Moreover, protein structure aids the determination of protein function, which can together with the structure be used to identify novel drug targets in the parasite. However, various structural features in <it>Plasmodium falciparum </it>proteins complicate the experimental determination of protein structures. Limited similarity to proteins in the Protein Data Bank and the shortage of solved protein structures in the malaria parasite necessitate genome-scale structural annotation of <it>P. falciparum </it>proteins. Additionally, the annotation of a range of structural features facilitates the identification of suitable targets for experimental and computational studies.</p> <p>Methods</p> <p>An integrated structural annotation system was developed and applied to <it>P. falciparum</it>, <it>Plasmodium vivax </it>and <it>Plasmodium yoelii</it>. The annotation included searches for sequence similarity, patterns and domains in addition to the following predictions: secondary structure, transmembrane helices, protein disorder, low complexity, coiled-coils and small molecule interactions. Subsequently, candidate proteins for further structural studies were identified based on the annotated structural features.</p> <p>Results</p> <p>The annotation results are accessible through a web interface, enabling users to select groups of proteins which fulfil multiple criteria pertaining to structural and functional features <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Analysis of features in the <it>P. falciparum </it>proteome showed that protein-interacting proteins contained a higher percentage of predicted disordered residues than non-interacting proteins. Proteins interacting with 10 or more proteins have a disordered content concentrated in the range of 60–100%, while the disorder distribution for proteins having only one interacting partner, was more evenly spread.</p> <p>Conclusion</p> <p>A series of <it>P. falciparum </it>protein targets for experimental structure determination, comparative modelling and <it>in silico </it>docking studies were putatively identified. The system is available for public use, where researchers may identify proteins by querying with multiple physico-chemical, sequence similarity and interaction features.</p> |
first_indexed | 2024-12-13T23:39:51Z |
format | Article |
id | doaj.art-5ddf8336d2e845b083fcfbab410e6ad2 |
institution | Directory Open Access Journal |
issn | 1475-2875 |
language | English |
last_indexed | 2024-12-13T23:39:51Z |
publishDate | 2008-05-01 |
publisher | BMC |
record_format | Article |
series | Malaria Journal |
spelling | doaj.art-5ddf8336d2e845b083fcfbab410e6ad22022-12-21T23:27:12ZengBMCMalaria Journal1475-28752008-05-01719010.1186/1475-2875-7-90A structural annotation resource for the selection of putative target proteins in the malaria parasiteJoubert FourieJoubert Yolandi<p>Abstract</p> <p>Background</p> <p>Protein structure plays a pivotal role in elucidating mechanisms of parasite functioning and drug resistance. Moreover, protein structure aids the determination of protein function, which can together with the structure be used to identify novel drug targets in the parasite. However, various structural features in <it>Plasmodium falciparum </it>proteins complicate the experimental determination of protein structures. Limited similarity to proteins in the Protein Data Bank and the shortage of solved protein structures in the malaria parasite necessitate genome-scale structural annotation of <it>P. falciparum </it>proteins. Additionally, the annotation of a range of structural features facilitates the identification of suitable targets for experimental and computational studies.</p> <p>Methods</p> <p>An integrated structural annotation system was developed and applied to <it>P. falciparum</it>, <it>Plasmodium vivax </it>and <it>Plasmodium yoelii</it>. The annotation included searches for sequence similarity, patterns and domains in addition to the following predictions: secondary structure, transmembrane helices, protein disorder, low complexity, coiled-coils and small molecule interactions. Subsequently, candidate proteins for further structural studies were identified based on the annotated structural features.</p> <p>Results</p> <p>The annotation results are accessible through a web interface, enabling users to select groups of proteins which fulfil multiple criteria pertaining to structural and functional features <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Analysis of features in the <it>P. falciparum </it>proteome showed that protein-interacting proteins contained a higher percentage of predicted disordered residues than non-interacting proteins. Proteins interacting with 10 or more proteins have a disordered content concentrated in the range of 60–100%, while the disorder distribution for proteins having only one interacting partner, was more evenly spread.</p> <p>Conclusion</p> <p>A series of <it>P. falciparum </it>protein targets for experimental structure determination, comparative modelling and <it>in silico </it>docking studies were putatively identified. The system is available for public use, where researchers may identify proteins by querying with multiple physico-chemical, sequence similarity and interaction features.</p>http://www.malariajournal.com/content/7/1/90 |
spellingShingle | Joubert Fourie Joubert Yolandi A structural annotation resource for the selection of putative target proteins in the malaria parasite Malaria Journal |
title | A structural annotation resource for the selection of putative target proteins in the malaria parasite |
title_full | A structural annotation resource for the selection of putative target proteins in the malaria parasite |
title_fullStr | A structural annotation resource for the selection of putative target proteins in the malaria parasite |
title_full_unstemmed | A structural annotation resource for the selection of putative target proteins in the malaria parasite |
title_short | A structural annotation resource for the selection of putative target proteins in the malaria parasite |
title_sort | structural annotation resource for the selection of putative target proteins in the malaria parasite |
url | http://www.malariajournal.com/content/7/1/90 |
work_keys_str_mv | AT joubertfourie astructuralannotationresourcefortheselectionofputativetargetproteinsinthemalariaparasite AT joubertyolandi astructuralannotationresourcefortheselectionofputativetargetproteinsinthemalariaparasite AT joubertfourie structuralannotationresourcefortheselectionofputativetargetproteinsinthemalariaparasite AT joubertyolandi structuralannotationresourcefortheselectionofputativetargetproteinsinthemalariaparasite |