Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state

<p>The photostationary state (PSS) equilibrium between NO and NO<span class="inline-formula"><sub>2</sub></span> is reached within minutes in the atmosphere and can be described by the PSS parameter, <span class="inline-formula"><i>φ</...

Full description

Bibliographic Details
Main Authors: S. T. Andersen, B. S. Nelson, K. A. Read, S. Punjabi, L. Neves, M. J. Rowlinson, J. Hopkins, T. Sherwen, L. K. Whalley, J. D. Lee, L. J. Carpenter
Format: Article
Language:English
Published: Copernicus Publications 2022-12-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/15747/2022/acp-22-15747-2022.pdf
_version_ 1811295704033787904
author S. T. Andersen
B. S. Nelson
K. A. Read
K. A. Read
S. Punjabi
S. Punjabi
L. Neves
M. J. Rowlinson
J. Hopkins
J. Hopkins
T. Sherwen
T. Sherwen
L. K. Whalley
L. K. Whalley
J. D. Lee
J. D. Lee
L. J. Carpenter
author_facet S. T. Andersen
B. S. Nelson
K. A. Read
K. A. Read
S. Punjabi
S. Punjabi
L. Neves
M. J. Rowlinson
J. Hopkins
J. Hopkins
T. Sherwen
T. Sherwen
L. K. Whalley
L. K. Whalley
J. D. Lee
J. D. Lee
L. J. Carpenter
author_sort S. T. Andersen
collection DOAJ
description <p>The photostationary state (PSS) equilibrium between NO and NO<span class="inline-formula"><sub>2</sub></span> is reached within minutes in the atmosphere and can be described by the PSS parameter, <span class="inline-formula"><i>φ</i></span>. Deviations from expected values of <span class="inline-formula"><i>φ</i></span> have previously been used to infer missing oxidants in diverse locations, from highly polluted regions to the extremely clean conditions observed in the remote marine boundary layer (MBL), and have been interpreted as missing understanding of fundamental photochemistry. Here, contrary to these previous observations, we observe good agreement between PSS-derived NO<span class="inline-formula"><sub>2</sub></span> ([NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>PSS ext.</sub></span>), calculated from measured NO, O<span class="inline-formula"><sub>3</sub></span>, and <span class="inline-formula"><i>j</i></span>NO<span class="inline-formula"><sub>2</sub></span> and photochemical box model predictions of peroxy radicals (RO<span class="inline-formula"><sub>2</sub></span> and HO<span class="inline-formula"><sub>2</sub></span>), and observed NO<span class="inline-formula"><sub>2</sub></span> ([NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>Obs.</sub></span>) in extremely clean air containing low levels of CO (<span class="inline-formula">&lt;90</span> ppbV) and VOCs (volatile organic compounds). However, in clean air containing small amounts of aged pollution (CO <span class="inline-formula">&gt;</span> 100 ppbV), we observed higher levels of NO<span class="inline-formula"><sub>2</sub></span> than inferred from the PSS, with [NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>Obs.</sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="31e788933a21fe22f46ea9f18ad5813e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-15747-2022-ie00001.svg" width="8pt" height="14pt" src="acp-22-15747-2022-ie00001.png"/></svg:svg></span></span> [NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>PSS ext.</sub></span> of 1.12–1.68 (25th–75th percentile), implying underestimation of RO<span class="inline-formula"><sub>2</sub></span> radicals by 18.5–104 pptV. Potential NO<span class="inline-formula"><sub>2</sub></span> measurement artefacts have to be carefully considered when comparing PSS-derived NO<span class="inline-formula"><sub>2</sub></span> to observed NO<span class="inline-formula"><sub>2</sub></span>, but we show that the NO<span class="inline-formula"><sub>2</sub></span> artefact required to explain the deviation would have to be <span class="inline-formula">∼</span> 4 times greater than the maximum calculated from known interferences. If the additional RO<span class="inline-formula"><sub>2</sub></span> radicals inferred from the PSS convert NO to NO<span class="inline-formula"><sub>2</sub></span> with a reaction rate equivalent to that of methyl peroxy radicals (CH<span class="inline-formula"><sub>3</sub></span>O<span class="inline-formula"><sub>2</sub></span>), then the calculated net ozone production rate (NOPR, ppbV h<span class="inline-formula"><sup>−1</sup></span>) including these additional oxidants is similar to the average change in O<span class="inline-formula"><sub>3</sub></span> observed, within estimated uncertainties, once halogen oxide chemistry is accounted for. This implies that such additional peroxy radicals cannot be excluded as a missing oxidant in clean marine air containing aged pollution and that modelled RO<span class="inline-formula"><sub>2</sub></span> concentrations are significantly underestimated under these conditions.</p>
first_indexed 2024-04-13T05:37:25Z
format Article
id doaj.art-5de61d64f09c4973b401fd33e9049a68
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-13T05:37:25Z
publishDate 2022-12-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-5de61d64f09c4973b401fd33e9049a682022-12-22T03:00:14ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-12-0122157471576510.5194/acp-22-15747-2022Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary stateS. T. Andersen0B. S. Nelson1K. A. Read2K. A. Read3S. Punjabi4S. Punjabi5L. Neves6M. J. Rowlinson7J. Hopkins8J. Hopkins9T. Sherwen10T. Sherwen11L. K. Whalley12L. K. Whalley13J. D. Lee14J. D. Lee15L. J. Carpenter16Wolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKInstituto Nacional de Meteorologia e Geofísica, São Vicente (INMG), Mindelo, Cabo VerdeWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK<p>The photostationary state (PSS) equilibrium between NO and NO<span class="inline-formula"><sub>2</sub></span> is reached within minutes in the atmosphere and can be described by the PSS parameter, <span class="inline-formula"><i>φ</i></span>. Deviations from expected values of <span class="inline-formula"><i>φ</i></span> have previously been used to infer missing oxidants in diverse locations, from highly polluted regions to the extremely clean conditions observed in the remote marine boundary layer (MBL), and have been interpreted as missing understanding of fundamental photochemistry. Here, contrary to these previous observations, we observe good agreement between PSS-derived NO<span class="inline-formula"><sub>2</sub></span> ([NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>PSS ext.</sub></span>), calculated from measured NO, O<span class="inline-formula"><sub>3</sub></span>, and <span class="inline-formula"><i>j</i></span>NO<span class="inline-formula"><sub>2</sub></span> and photochemical box model predictions of peroxy radicals (RO<span class="inline-formula"><sub>2</sub></span> and HO<span class="inline-formula"><sub>2</sub></span>), and observed NO<span class="inline-formula"><sub>2</sub></span> ([NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>Obs.</sub></span>) in extremely clean air containing low levels of CO (<span class="inline-formula">&lt;90</span> ppbV) and VOCs (volatile organic compounds). However, in clean air containing small amounts of aged pollution (CO <span class="inline-formula">&gt;</span> 100 ppbV), we observed higher levels of NO<span class="inline-formula"><sub>2</sub></span> than inferred from the PSS, with [NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>Obs.</sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="31e788933a21fe22f46ea9f18ad5813e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-15747-2022-ie00001.svg" width="8pt" height="14pt" src="acp-22-15747-2022-ie00001.png"/></svg:svg></span></span> [NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>PSS ext.</sub></span> of 1.12–1.68 (25th–75th percentile), implying underestimation of RO<span class="inline-formula"><sub>2</sub></span> radicals by 18.5–104 pptV. Potential NO<span class="inline-formula"><sub>2</sub></span> measurement artefacts have to be carefully considered when comparing PSS-derived NO<span class="inline-formula"><sub>2</sub></span> to observed NO<span class="inline-formula"><sub>2</sub></span>, but we show that the NO<span class="inline-formula"><sub>2</sub></span> artefact required to explain the deviation would have to be <span class="inline-formula">∼</span> 4 times greater than the maximum calculated from known interferences. If the additional RO<span class="inline-formula"><sub>2</sub></span> radicals inferred from the PSS convert NO to NO<span class="inline-formula"><sub>2</sub></span> with a reaction rate equivalent to that of methyl peroxy radicals (CH<span class="inline-formula"><sub>3</sub></span>O<span class="inline-formula"><sub>2</sub></span>), then the calculated net ozone production rate (NOPR, ppbV h<span class="inline-formula"><sup>−1</sup></span>) including these additional oxidants is similar to the average change in O<span class="inline-formula"><sub>3</sub></span> observed, within estimated uncertainties, once halogen oxide chemistry is accounted for. This implies that such additional peroxy radicals cannot be excluded as a missing oxidant in clean marine air containing aged pollution and that modelled RO<span class="inline-formula"><sub>2</sub></span> concentrations are significantly underestimated under these conditions.</p>https://acp.copernicus.org/articles/22/15747/2022/acp-22-15747-2022.pdf
spellingShingle S. T. Andersen
B. S. Nelson
K. A. Read
K. A. Read
S. Punjabi
S. Punjabi
L. Neves
M. J. Rowlinson
J. Hopkins
J. Hopkins
T. Sherwen
T. Sherwen
L. K. Whalley
L. K. Whalley
J. D. Lee
J. D. Lee
L. J. Carpenter
Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state
Atmospheric Chemistry and Physics
title Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state
title_full Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state
title_fullStr Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state
title_full_unstemmed Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state
title_short Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state
title_sort fundamental oxidation processes in the remote marine atmosphere investigated using the no no sub 2 sub o sub 3 sub photostationary state
url https://acp.copernicus.org/articles/22/15747/2022/acp-22-15747-2022.pdf
work_keys_str_mv AT standersen fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT bsnelson fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT karead fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT karead fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT spunjabi fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT spunjabi fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT lneves fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT mjrowlinson fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT jhopkins fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT jhopkins fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT tsherwen fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT tsherwen fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT lkwhalley fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT lkwhalley fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT jdlee fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT jdlee fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate
AT ljcarpenter fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate