Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state
<p>The photostationary state (PSS) equilibrium between NO and NO<span class="inline-formula"><sub>2</sub></span> is reached within minutes in the atmosphere and can be described by the PSS parameter, <span class="inline-formula"><i>φ</...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-12-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/22/15747/2022/acp-22-15747-2022.pdf |
_version_ | 1811295704033787904 |
---|---|
author | S. T. Andersen B. S. Nelson K. A. Read K. A. Read S. Punjabi S. Punjabi L. Neves M. J. Rowlinson J. Hopkins J. Hopkins T. Sherwen T. Sherwen L. K. Whalley L. K. Whalley J. D. Lee J. D. Lee L. J. Carpenter |
author_facet | S. T. Andersen B. S. Nelson K. A. Read K. A. Read S. Punjabi S. Punjabi L. Neves M. J. Rowlinson J. Hopkins J. Hopkins T. Sherwen T. Sherwen L. K. Whalley L. K. Whalley J. D. Lee J. D. Lee L. J. Carpenter |
author_sort | S. T. Andersen |
collection | DOAJ |
description | <p>The photostationary state (PSS) equilibrium between NO and NO<span class="inline-formula"><sub>2</sub></span> is
reached within minutes in the atmosphere and can be described by the PSS
parameter, <span class="inline-formula"><i>φ</i></span>. Deviations from expected values of <span class="inline-formula"><i>φ</i></span> have
previously been used to infer missing oxidants in diverse locations, from
highly polluted regions to the extremely clean conditions observed in the
remote marine boundary layer (MBL), and have been interpreted as missing
understanding of fundamental photochemistry. Here, contrary to these
previous observations, we observe good agreement between PSS-derived
NO<span class="inline-formula"><sub>2</sub></span> ([NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>PSS ext.</sub></span>), calculated from measured NO, O<span class="inline-formula"><sub>3</sub></span>,
and <span class="inline-formula"><i>j</i></span>NO<span class="inline-formula"><sub>2</sub></span> and photochemical box model predictions of peroxy radicals
(RO<span class="inline-formula"><sub>2</sub></span> and HO<span class="inline-formula"><sub>2</sub></span>), and observed NO<span class="inline-formula"><sub>2</sub></span> ([NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>Obs.</sub></span>) in
extremely clean air containing low levels of CO (<span class="inline-formula"><90</span> ppbV) and
VOCs (volatile organic compounds). However, in clean air containing small amounts of aged pollution (CO <span class="inline-formula">></span> 100 ppbV), we observed higher levels of NO<span class="inline-formula"><sub>2</sub></span> than inferred
from the PSS, with [NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>Obs.</sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="31e788933a21fe22f46ea9f18ad5813e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-15747-2022-ie00001.svg" width="8pt" height="14pt" src="acp-22-15747-2022-ie00001.png"/></svg:svg></span></span> [NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>PSS ext.</sub></span> of
1.12–1.68 (25th–75th percentile), implying underestimation of
RO<span class="inline-formula"><sub>2</sub></span> radicals by 18.5–104 pptV. Potential NO<span class="inline-formula"><sub>2</sub></span> measurement artefacts
have to be carefully considered when comparing PSS-derived NO<span class="inline-formula"><sub>2</sub></span> to
observed NO<span class="inline-formula"><sub>2</sub></span>, but we show that the NO<span class="inline-formula"><sub>2</sub></span> artefact required to
explain the deviation would have to be <span class="inline-formula">∼</span> 4 times greater than
the maximum calculated from known interferences. If the additional RO<span class="inline-formula"><sub>2</sub></span>
radicals inferred from the PSS convert NO to NO<span class="inline-formula"><sub>2</sub></span> with a reaction rate
equivalent to that of methyl peroxy radicals (CH<span class="inline-formula"><sub>3</sub></span>O<span class="inline-formula"><sub>2</sub></span>), then the
calculated net ozone production rate (NOPR, ppbV h<span class="inline-formula"><sup>−1</sup></span>) including these
additional oxidants is similar to the average change in O<span class="inline-formula"><sub>3</sub></span> observed,
within estimated uncertainties, once halogen oxide chemistry is accounted
for. This implies that such additional peroxy radicals cannot be excluded
as a missing oxidant in clean marine air containing aged pollution and that
modelled RO<span class="inline-formula"><sub>2</sub></span> concentrations are significantly underestimated under
these conditions.</p> |
first_indexed | 2024-04-13T05:37:25Z |
format | Article |
id | doaj.art-5de61d64f09c4973b401fd33e9049a68 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-04-13T05:37:25Z |
publishDate | 2022-12-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-5de61d64f09c4973b401fd33e9049a682022-12-22T03:00:14ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-12-0122157471576510.5194/acp-22-15747-2022Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary stateS. T. Andersen0B. S. Nelson1K. A. Read2K. A. Read3S. Punjabi4S. Punjabi5L. Neves6M. J. Rowlinson7J. Hopkins8J. Hopkins9T. Sherwen10T. Sherwen11L. K. Whalley12L. K. Whalley13J. D. Lee14J. D. Lee15L. J. Carpenter16Wolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKInstituto Nacional de Meteorologia e Geofísica, São Vicente (INMG), Mindelo, Cabo VerdeWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKNational Centre for Atmospheric Science (NCAS), University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK<p>The photostationary state (PSS) equilibrium between NO and NO<span class="inline-formula"><sub>2</sub></span> is reached within minutes in the atmosphere and can be described by the PSS parameter, <span class="inline-formula"><i>φ</i></span>. Deviations from expected values of <span class="inline-formula"><i>φ</i></span> have previously been used to infer missing oxidants in diverse locations, from highly polluted regions to the extremely clean conditions observed in the remote marine boundary layer (MBL), and have been interpreted as missing understanding of fundamental photochemistry. Here, contrary to these previous observations, we observe good agreement between PSS-derived NO<span class="inline-formula"><sub>2</sub></span> ([NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>PSS ext.</sub></span>), calculated from measured NO, O<span class="inline-formula"><sub>3</sub></span>, and <span class="inline-formula"><i>j</i></span>NO<span class="inline-formula"><sub>2</sub></span> and photochemical box model predictions of peroxy radicals (RO<span class="inline-formula"><sub>2</sub></span> and HO<span class="inline-formula"><sub>2</sub></span>), and observed NO<span class="inline-formula"><sub>2</sub></span> ([NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>Obs.</sub></span>) in extremely clean air containing low levels of CO (<span class="inline-formula"><90</span> ppbV) and VOCs (volatile organic compounds). However, in clean air containing small amounts of aged pollution (CO <span class="inline-formula">></span> 100 ppbV), we observed higher levels of NO<span class="inline-formula"><sub>2</sub></span> than inferred from the PSS, with [NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>Obs.</sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="31e788933a21fe22f46ea9f18ad5813e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-15747-2022-ie00001.svg" width="8pt" height="14pt" src="acp-22-15747-2022-ie00001.png"/></svg:svg></span></span> [NO<span class="inline-formula"><sub>2</sub></span>]<span class="inline-formula"><sub>PSS ext.</sub></span> of 1.12–1.68 (25th–75th percentile), implying underestimation of RO<span class="inline-formula"><sub>2</sub></span> radicals by 18.5–104 pptV. Potential NO<span class="inline-formula"><sub>2</sub></span> measurement artefacts have to be carefully considered when comparing PSS-derived NO<span class="inline-formula"><sub>2</sub></span> to observed NO<span class="inline-formula"><sub>2</sub></span>, but we show that the NO<span class="inline-formula"><sub>2</sub></span> artefact required to explain the deviation would have to be <span class="inline-formula">∼</span> 4 times greater than the maximum calculated from known interferences. If the additional RO<span class="inline-formula"><sub>2</sub></span> radicals inferred from the PSS convert NO to NO<span class="inline-formula"><sub>2</sub></span> with a reaction rate equivalent to that of methyl peroxy radicals (CH<span class="inline-formula"><sub>3</sub></span>O<span class="inline-formula"><sub>2</sub></span>), then the calculated net ozone production rate (NOPR, ppbV h<span class="inline-formula"><sup>−1</sup></span>) including these additional oxidants is similar to the average change in O<span class="inline-formula"><sub>3</sub></span> observed, within estimated uncertainties, once halogen oxide chemistry is accounted for. This implies that such additional peroxy radicals cannot be excluded as a missing oxidant in clean marine air containing aged pollution and that modelled RO<span class="inline-formula"><sub>2</sub></span> concentrations are significantly underestimated under these conditions.</p>https://acp.copernicus.org/articles/22/15747/2022/acp-22-15747-2022.pdf |
spellingShingle | S. T. Andersen B. S. Nelson K. A. Read K. A. Read S. Punjabi S. Punjabi L. Neves M. J. Rowlinson J. Hopkins J. Hopkins T. Sherwen T. Sherwen L. K. Whalley L. K. Whalley J. D. Lee J. D. Lee L. J. Carpenter Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state Atmospheric Chemistry and Physics |
title | Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state |
title_full | Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state |
title_fullStr | Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state |
title_full_unstemmed | Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state |
title_short | Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO<sub>2</sub>–O<sub>3</sub> photostationary state |
title_sort | fundamental oxidation processes in the remote marine atmosphere investigated using the no no sub 2 sub o sub 3 sub photostationary state |
url | https://acp.copernicus.org/articles/22/15747/2022/acp-22-15747-2022.pdf |
work_keys_str_mv | AT standersen fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT bsnelson fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT karead fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT karead fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT spunjabi fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT spunjabi fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT lneves fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT mjrowlinson fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT jhopkins fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT jhopkins fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT tsherwen fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT tsherwen fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT lkwhalley fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT lkwhalley fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT jdlee fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT jdlee fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate AT ljcarpenter fundamentaloxidationprocessesintheremotemarineatmosphereinvestigatedusingthenonosub2subosub3subphotostationarystate |