Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network

Abstract Aims We aim to develop a pragmatic screening tool for heart failure at the general population level. Methods and results This study was conducted within the Hamburg‐City‐Health‐Study, an ongoing, prospective, observational study enrolling randomly selected inhabitants of the city of Hamburg...

Full description

Bibliographic Details
Main Authors: Kishore Surendra, Sylvia Nürnberg, Jan P. Bremer, Marius S. Knorr, Frank Ückert, Jan Per Wenzel, Ramona Bei der Kellen, Dirk Westermann, Renate B. Schnabel, Raphael Twerenbold, Christina Magnussen, Paulus Kirchhof, Stefan Blankenberg, Johannes Neumann, Benedikt Schrage
Format: Article
Language:English
Published: Wiley 2023-04-01
Series:ESC Heart Failure
Subjects:
Online Access:https://doi.org/10.1002/ehf2.14263
_version_ 1797857618795954176
author Kishore Surendra
Sylvia Nürnberg
Jan P. Bremer
Marius S. Knorr
Frank Ückert
Jan Per Wenzel
Ramona Bei der Kellen
Dirk Westermann
Renate B. Schnabel
Raphael Twerenbold
Christina Magnussen
Paulus Kirchhof
Stefan Blankenberg
Johannes Neumann
Benedikt Schrage
author_facet Kishore Surendra
Sylvia Nürnberg
Jan P. Bremer
Marius S. Knorr
Frank Ückert
Jan Per Wenzel
Ramona Bei der Kellen
Dirk Westermann
Renate B. Schnabel
Raphael Twerenbold
Christina Magnussen
Paulus Kirchhof
Stefan Blankenberg
Johannes Neumann
Benedikt Schrage
author_sort Kishore Surendra
collection DOAJ
description Abstract Aims We aim to develop a pragmatic screening tool for heart failure at the general population level. Methods and results This study was conducted within the Hamburg‐City‐Health‐Study, an ongoing, prospective, observational study enrolling randomly selected inhabitants of the city of Hamburg aged 45–75 years. Heart failure was diagnosed per current guidelines. Using only digital electrocardiograms (ECGs), a convolutional neural network (CNN) was built to discriminate participants with and without heart failure. As comparisons, known risk variables for heart failure were fitted into a logistic regression model and a random forest classifier. Of the 5299 individuals included into this study, 318 individuals (6.0%) had heart failure. Using only the digital ECGs instead of several risk variables as an input, the CNN provided a comparable predictive accuracy for heart failure versus the logistic regression model and the random forest classifier [area under the curve (AUC) of 0.75, a sensitivity of 0.67 and a specificity of 0.69 for the CNN; AUC 0.77, a sensitivity of 0.63 and a specificity of 0.76 for the logistic regression; AUC 0.79, a sensitivity of 0.67 and a specificity of 0.72 for the random forest classifier]. Conclusions Using a CNN build on digital ECGs only and requiring no additional input, we derived a screening tool for heart failure in the general population. This could be perfectly embedded into clinical routine of general practitioners, as it builds on an already established diagnostic tool and does not require additional, time‐consuming input. This could help to alleviate the underdiagnosis of heart failure.
first_indexed 2024-04-09T20:59:38Z
format Article
id doaj.art-5df39e51c5544b8ab6ddca88ae32af12
institution Directory Open Access Journal
issn 2055-5822
language English
last_indexed 2024-04-09T20:59:38Z
publishDate 2023-04-01
publisher Wiley
record_format Article
series ESC Heart Failure
spelling doaj.art-5df39e51c5544b8ab6ddca88ae32af122023-03-29T11:45:21ZengWileyESC Heart Failure2055-58222023-04-0110297598410.1002/ehf2.14263Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural networkKishore Surendra0Sylvia Nürnberg1Jan P. Bremer2Marius S. Knorr3Frank Ückert4Jan Per Wenzel5Ramona Bei der Kellen6Dirk Westermann7Renate B. Schnabel8Raphael Twerenbold9Christina Magnussen10Paulus Kirchhof11Stefan Blankenberg12Johannes Neumann13Benedikt Schrage14Department of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyInstitute of Applied Medical Informatics University Hospital Hamburg‐Eppendorf Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyInstitute of Applied Medical Informatics University Hospital Hamburg‐Eppendorf Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyDepartment of Cardiology University Heart and Vascular Center Hamburg Hamburg GermanyAbstract Aims We aim to develop a pragmatic screening tool for heart failure at the general population level. Methods and results This study was conducted within the Hamburg‐City‐Health‐Study, an ongoing, prospective, observational study enrolling randomly selected inhabitants of the city of Hamburg aged 45–75 years. Heart failure was diagnosed per current guidelines. Using only digital electrocardiograms (ECGs), a convolutional neural network (CNN) was built to discriminate participants with and without heart failure. As comparisons, known risk variables for heart failure were fitted into a logistic regression model and a random forest classifier. Of the 5299 individuals included into this study, 318 individuals (6.0%) had heart failure. Using only the digital ECGs instead of several risk variables as an input, the CNN provided a comparable predictive accuracy for heart failure versus the logistic regression model and the random forest classifier [area under the curve (AUC) of 0.75, a sensitivity of 0.67 and a specificity of 0.69 for the CNN; AUC 0.77, a sensitivity of 0.63 and a specificity of 0.76 for the logistic regression; AUC 0.79, a sensitivity of 0.67 and a specificity of 0.72 for the random forest classifier]. Conclusions Using a CNN build on digital ECGs only and requiring no additional input, we derived a screening tool for heart failure in the general population. This could be perfectly embedded into clinical routine of general practitioners, as it builds on an already established diagnostic tool and does not require additional, time‐consuming input. This could help to alleviate the underdiagnosis of heart failure.https://doi.org/10.1002/ehf2.14263Heart failureScreeningPragmaticPopulation
spellingShingle Kishore Surendra
Sylvia Nürnberg
Jan P. Bremer
Marius S. Knorr
Frank Ückert
Jan Per Wenzel
Ramona Bei der Kellen
Dirk Westermann
Renate B. Schnabel
Raphael Twerenbold
Christina Magnussen
Paulus Kirchhof
Stefan Blankenberg
Johannes Neumann
Benedikt Schrage
Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
ESC Heart Failure
Heart failure
Screening
Pragmatic
Population
title Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
title_full Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
title_fullStr Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
title_full_unstemmed Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
title_short Pragmatic screening for heart failure in the general population using an electrocardiogram‐based neural network
title_sort pragmatic screening for heart failure in the general population using an electrocardiogram based neural network
topic Heart failure
Screening
Pragmatic
Population
url https://doi.org/10.1002/ehf2.14263
work_keys_str_mv AT kishoresurendra pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT sylvianurnberg pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT janpbremer pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT mariussknorr pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT frankuckert pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT janperwenzel pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT ramonabeiderkellen pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT dirkwestermann pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT renatebschnabel pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT raphaeltwerenbold pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT christinamagnussen pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT pauluskirchhof pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT stefanblankenberg pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT johannesneumann pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork
AT benediktschrage pragmaticscreeningforheartfailureinthegeneralpopulationusinganelectrocardiogrambasedneuralnetwork