An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations
In this paper, we study a class of anisotropic variable exponent problems involving the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>p</mi><mo>→</mo></mover></seman...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/4/633 |
_version_ | 1797538185295691776 |
---|---|
author | Anass Ourraoui Maria Alessandra Ragusa |
author_facet | Anass Ourraoui Maria Alessandra Ragusa |
author_sort | Anass Ourraoui |
collection | DOAJ |
description | In this paper, we study a class of anisotropic variable exponent problems involving the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>p</mi><mo>→</mo></mover></semantics></math></inline-formula>(.)-Laplacian. By using the variational method as our main tool, we present a result regarding the existence of solutions without the so-called Ambrosetti–Rabinowitz-type conditions. |
first_indexed | 2024-03-10T12:26:58Z |
format | Article |
id | doaj.art-5e0605afa5964043b7b94ca2256c5ea1 |
institution | Directory Open Access Journal |
issn | 2073-8994 |
language | English |
last_indexed | 2024-03-10T12:26:58Z |
publishDate | 2021-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Symmetry |
spelling | doaj.art-5e0605afa5964043b7b94ca2256c5ea12023-11-21T14:56:13ZengMDPI AGSymmetry2073-89942021-04-0113463310.3390/sym13040633An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type EquationsAnass Ourraoui0Maria Alessandra Ragusa1FSO, Department of Mathematics, University of Mohammed First, Oujda BP 524-60000, MoroccoDipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria 6, 95125 Catania, ItalyIn this paper, we study a class of anisotropic variable exponent problems involving the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>p</mi><mo>→</mo></mover></semantics></math></inline-formula>(.)-Laplacian. By using the variational method as our main tool, we present a result regarding the existence of solutions without the so-called Ambrosetti–Rabinowitz-type conditions.https://www.mdpi.com/2073-8994/13/4/633elliptic problemanisotropicweak solutionasymmetric behaviour |
spellingShingle | Anass Ourraoui Maria Alessandra Ragusa An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations Symmetry elliptic problem anisotropic weak solution asymmetric behaviour |
title | An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations |
title_full | An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations |
title_fullStr | An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations |
title_full_unstemmed | An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations |
title_short | An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations |
title_sort | existence result for a class of i p i i x i anisotropic type equations |
topic | elliptic problem anisotropic weak solution asymmetric behaviour |
url | https://www.mdpi.com/2073-8994/13/4/633 |
work_keys_str_mv | AT anassourraoui anexistenceresultforaclassofipiixianisotropictypeequations AT mariaalessandraragusa anexistenceresultforaclassofipiixianisotropictypeequations AT anassourraoui existenceresultforaclassofipiixianisotropictypeequations AT mariaalessandraragusa existenceresultforaclassofipiixianisotropictypeequations |