An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations

In this paper, we study a class of anisotropic variable exponent problems involving the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>p</mi><mo>→</mo></mover></seman...

Full description

Bibliographic Details
Main Authors: Anass Ourraoui, Maria Alessandra Ragusa
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/4/633
_version_ 1797538185295691776
author Anass Ourraoui
Maria Alessandra Ragusa
author_facet Anass Ourraoui
Maria Alessandra Ragusa
author_sort Anass Ourraoui
collection DOAJ
description In this paper, we study a class of anisotropic variable exponent problems involving the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>p</mi><mo>→</mo></mover></semantics></math></inline-formula>(.)-Laplacian. By using the variational method as our main tool, we present a result regarding the existence of solutions without the so-called Ambrosetti–Rabinowitz-type conditions.
first_indexed 2024-03-10T12:26:58Z
format Article
id doaj.art-5e0605afa5964043b7b94ca2256c5ea1
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T12:26:58Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-5e0605afa5964043b7b94ca2256c5ea12023-11-21T14:56:13ZengMDPI AGSymmetry2073-89942021-04-0113463310.3390/sym13040633An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type EquationsAnass Ourraoui0Maria Alessandra Ragusa1FSO, Department of Mathematics, University of Mohammed First, Oujda BP 524-60000, MoroccoDipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria 6, 95125 Catania, ItalyIn this paper, we study a class of anisotropic variable exponent problems involving the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>p</mi><mo>→</mo></mover></semantics></math></inline-formula>(.)-Laplacian. By using the variational method as our main tool, we present a result regarding the existence of solutions without the so-called Ambrosetti–Rabinowitz-type conditions.https://www.mdpi.com/2073-8994/13/4/633elliptic problemanisotropicweak solutionasymmetric behaviour
spellingShingle Anass Ourraoui
Maria Alessandra Ragusa
An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations
Symmetry
elliptic problem
anisotropic
weak solution
asymmetric behaviour
title An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations
title_full An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations
title_fullStr An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations
title_full_unstemmed An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations
title_short An Existence Result for a Class of <i>p</i>(<i>x</i>)—Anisotropic Type Equations
title_sort existence result for a class of i p i i x i anisotropic type equations
topic elliptic problem
anisotropic
weak solution
asymmetric behaviour
url https://www.mdpi.com/2073-8994/13/4/633
work_keys_str_mv AT anassourraoui anexistenceresultforaclassofipiixianisotropictypeequations
AT mariaalessandraragusa anexistenceresultforaclassofipiixianisotropictypeequations
AT anassourraoui existenceresultforaclassofipiixianisotropictypeequations
AT mariaalessandraragusa existenceresultforaclassofipiixianisotropictypeequations